上海市徐汇区田林第二中学2022-2023学年数学九年级第一学期期末复习检测试题含解析_第1页
上海市徐汇区田林第二中学2022-2023学年数学九年级第一学期期末复习检测试题含解析_第2页
上海市徐汇区田林第二中学2022-2023学年数学九年级第一学期期末复习检测试题含解析_第3页
上海市徐汇区田林第二中学2022-2023学年数学九年级第一学期期末复习检测试题含解析_第4页
上海市徐汇区田林第二中学2022-2023学年数学九年级第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某新能源汽车4s店的汽车销量自2018年起逐月增加.据统计,该店第一季度的汽车销量就达244辆,其中1月份销售汽车64辆.若该店1月份到3月份新能源汽车销售量的月平均增长率为x,则下列方程正确的是()A.64(1+x)2=244B.64(1+2x)=244C.64+64(1+x)+64(1+x)2=244D.64+64(1+x)+64(1+2x)=2442.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变3.如图,矩形草坪ABCD中,AD=10m,AB=m.现需要修一条由两个扇环构成的便道HEFG,扇环的圆心分别是B,D.若便道的宽为1m,则这条便道的面积大约是()(精确到0.1m2)A.9.5m2 B.10.0m2 C.10.5m2 D.11.0m24.如下图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为()A. B. C. D.5.下列标志既是轴对称图形又是中心对称图形的是().A. B.C. D.6.如图,反比例函数y=(x>0)的图象经过Rt△BOC斜边上的中点A,与边BC交于点D,连接AD,则△ADB的面积为()A.12 B.16 C.20 D.247.如图,与正六边形的边分别交于点,点为劣弧的中点.若.则点到的距离是()A. B. C. D.8.下列图形中,可以看作是中心对称图形的是()A. B.C. D.9.如图,在中,点分别在边上,且,则下列结论不一定成立的是()A. B. C. D.10.用min{a,b}表示a,b两数中的最小数,若函数,则y的图象为()A. B. C. D.二、填空题(每小题3分,共24分)11.若实数、满足,则以、的值为边长的等腰三角形的周长为.12.点是线段的黄金分割点,若,则较长线段的长是_____.13.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是__________.14.如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限.△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚10次后AB中点M经过的路径长为________15.如图,E是▱ABCD的BC边的中点,BD与AE相交于F,则△ABF与四边形ECDF的面积之比等于_____.16.6与x的2倍的和是负数,用不等式表示为.17.如图,、是两个等边三角形,连接、.若,,,则__________.18.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_______.三、解答题(共66分)19.(10分)某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5米.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3米.建立平面直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间近似满足函数关系(1)求y与x之间的函数关系式;(2)求水流喷出的最大高度.20.(6分)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=的图象上,OA=1,OC=6,试求出正方形ADEF的边长.21.(6分)点为图形上任意一点,过点作直线垂足为,记的长度为.定义一:若存在最大值,则称其为“图形到直线的限距离”,记作;定义二:若存在最小值,则称其为“图形到直线的基距离”,记作;(1)已知直线,平面内反比例函数在第一象限内的图象记作则.(2)已知直线,点,点是轴上一个动点,的半径为,点在上,若求此时的取值范围,(3)已知直线恒过定点,点恒在直线上,点是平面上一动点,记以点为顶点,原点为对角线交点的正方形为图形,若请直接写出的取值范围.22.(8分)综合与探究:如图所示,在平面直角坐标系中,直线与反比例函数的图象交于,两点,过点作轴于点,过点作轴于点.

(1)求,的值及反比例函数的函数表达式;(2)若点在线段上,且,请求出此时点的坐标;(3)小颖在探索中发现:在轴正半轴上存在点,使得是以为顶角的等腰三角形.请你直接写出点的坐标.23.(8分)某市有、两个公园,甲、乙、丙三位同学随机选择其中一个公园游玩,请利用树状图求三位同学恰好在同一个公园游玩的概率.24.(8分)如图,AB是的直径,点C,D在上,且BD平分∠ABC.过点D作BC的垂线,与BC的延长线相交于点E,与BA的延长线相交于点F.(1)求证:EF与相切:(2)若AB=3,BD=,求CE的长.25.(10分)如图,是⊙的直径,、是圆周上的点,,弦交于点.(1)求证:;(2)若,求的度数.26.(10分)(1)计算.sin30°tan45°-cos30°tan30°+sin45°tan60°(2)已知cos(180°﹣a)=﹣cosa,请你根据给出的公式试求cos120°的值

参考答案一、选择题(每小题3分,共30分)1、C【分析】设该店1月份到3月份新能源汽车销售量的月平均增长率为x,等量关系为:1月份的销售量+1月份的销售量×(1+增长率)+1月份的销售量×(1+增长率)2=第一季度的销售量,把相关数值代入求解即可.【详解】设该店1月份到3月份新能源汽车销售量的月平均增长率为x,根据题意列方程:64+64(1+x)+64(1+x)2=1.故选:C.【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.2、D【解析】如图,作辅助线;首先证明△BEO∽△OFA,,得到;设B为(a,),A为(b,),得到OE=-a,EB=,OF=b,AF=,进而得到,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴,设点B为(a,),A为(b,),则OE=-a,EB=,OF=b,AF=,可代入比例式求得,即,根据勾股定理可得:OB=,OA=,∴tan∠OAB===∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.3、C【分析】由四边形ABCD为矩形得到△ADB为直角三角形,又由AD=10,AB=10,由此利用勾股定理求出BD=20,又由cos∠ADB=,得到∠ADB=60°,又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°且外环半径为10.1,内环半径为9.1.这样可以求出每个扇环的面积.【详解】∵四边形ABCD为矩形,∴△ADB为直角三角形,又∵AD=10,AB=,∴BD=,又∵cos∠ADB=,∴∠ADB=60°.又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°,且外环半径为10.1,内环半径为9.1.∴每个扇环的面积为.∴当π取3.14时整条便道面积为×2=10.4666≈10.1m2.便道面积约为10.1m2.故选:C.【点睛】此题考查内容比较多,有勾股定理、三角函数、扇形面积,做题的关键是把实际问题转化为数学问题.4、C【解析】两对对应点的连线的交点即为位似中心,连接OD、AC,交点为(2,2,)即位似中心为(2,2,);k=OA:CD=6:3=2,故选C.5、B【分析】根据轴对称图形与中心对称图形的定义解答.【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是中心对称图形,不是轴对称图形;D、是轴对称图形,不是中心对称图形.故选:B.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、A【解析】过A作AE⊥OC于E,设A(a,b),求得B(2a,2b),ab=16,得到S△BCO=2ab=32,于是得到结论.【详解】过A作AE⊥OC于E,设A(a,b),∵当A是OB的中点,∴B(2a,2b),∵反比例函数y=(x>0)的图象经过Rt△BOC斜边上的中点A,∴ab=16,∴S△BCO=2ab=32,∵点D在反比例函数数y=(x>0)的图象上,∴S△OCD=16÷2=8,∴S△BOD=32﹣8=24,∴△ADB的面积=S△BOD=12,故选:A.【点睛】本题主要考查反比例函数的图象与三角形的综合,掌握反比例函数的比例系数k的几何意义,添加合适的辅助线,是解题的关键.7、C【分析】连接OM,作,交MF与点H,根据正六边性的性质可得出,,得出为等边三角形,再求OH即可.【详解】解:∵六边形是正六边形,∴∵点为劣弧的中点∴连接OM,作,交MF与点H∵为等边三角形∴FM=OM,∴故答案为:C.【点睛】本题考查的知识点有多边形的内角与外角,特殊角的三角函数值,等边三角形的性质,理解题意正确作出辅助线是解题的关键.8、B【解析】根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,直接判断即可.【详解】解:.不是中心对称图形;.是中心对称图形;.不是中心对称图形;.不是中心对称图形.故选:.【点睛】本题考查的知识点是中心对称图形的判定,这里需要注意与轴对称图形的区别,轴对称形是:一定要沿某直线折叠后直线两旁的部分互相重合;中心对称图形是:图形绕某一点旋转180°后与原来的图形重合.9、B【分析】根据相似三角形平行线分线段成比例的性质,分别判定即可.【详解】∵∴∠A=∠CEF,∠ADE=∠ABC,∠CFE=∠ABC,,∴∠ADE=∠CFE,,C选项正确;∴△ADE∽△EFC∴,A选项正确;又∵∴,D选项正确;∵∴不成立故答案为B.【点睛】此题主要考查相似三角形平行线分线段成比例的运用,熟练掌握,即可解题.10、C【分析】根据题意,把问题转化为二次函数问题.【详解】根据题意,min{x2+1,1-x2}表示x2+1与1-x2中的最小数,不论x取何值,都有x2+1≥1-x2,所以y=1-x2;可知,当x=0时,y=1;当y=0时,x=±1;则函数图象与x轴的交点坐标为(1,0),(-1,0);与y轴的交点坐标为(0,1).故选C.【点睛】考核知识点:二次函数的性质.二、填空题(每小题3分,共24分)11、1.【解析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解:根据题意得,x﹣4=0,y﹣2=0,解得x=4,y=2.①4是腰长时,三角形的三边分别为4、4、2,∵4+4=2,∴不能组成三角形,②4是底边时,三角形的三边分别为4、2、2,能组成三角形,周长=4+2+2=1.所以,三角形的周长为1.12、【分析】根据黄金分割的概念得到较长线段,代入计算即可.【详解】∵C是AB的黄金分割点,

∴较长线段,∵AB=2cm,

∴P;

故答案为:.【点睛】本题考查了黄金分割,一个点把一条线段分成两段,其中较长线段是较短线段与整个线段的比例中项,那么就说这条线段被这点黄金分割,这个点叫这条线段的黄金分割点,并且较长线段是整个线段的倍.13、k>﹣1且k≠1.【解析】由关于x的一元二次方程kx2-2x-1=1有两个不相等的实数根,即可得判别式△>1且k≠1,则可求得k的取值范围.【详解】解:∵关于x的一元二次方程kx2﹣2x﹣1=1有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>1,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=1∴k≠1,∴k的取值范围是:k>﹣1且k≠1.故答案为:k>﹣1且k≠1.【点睛】此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>1⇔方程有两个不相等的实数根;(2)△=1⇔方程有两个相等的实数根;(3)△<1⇔方程没有实数根.14、(4+)【分析】根据题意先作B3E⊥x轴于E,观察图象可知为三次一个循环,求点M的运动路径,进而分析求得翻滚10次后AB中点M经过的路径长.【详解】解:如图作B3E⊥x轴于E,可知OE=5,B3E=,观察图象可知为三次一个循环,一个循环点M的运动路径为:,则翻滚10次后AB中点M经过的路径长为:.故答案为:(4+).【点睛】本题考查规律题,解题的关键是灵活运用弧长公式、等边三角形的性质等知识解决问题.15、【分析】△ABF和△ABE等高,先判断出,进而算出,△ABF和△AFD等高,得,由,即可解出.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵E是▱ABCD的BC边的中点,∴,∵△ABE和△ABF同高,∴,∴S△ABE=S△ABF,设▱ABCD中,BC边上的高为h,∵S△ABE=×BE×h,S▱ABCD=BC×h=2×BE×h,∴S▱ABCD=4S△ABE=4×S△ABF=6S△ABF,∵△ABF与△ADF等高,∴,∴S△ADF=2S△ABF,∴S四边形ECDF=S▱ABCD﹣S△ABE﹣S△ADF=S△ABF,∴,故答案为:.【点睛】本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.16、6+2x<1【解析】试题分析:6与x的2倍的和为2x+6;和是负数,那么前面所得的结果小于1.解:x的2倍为2x,6与x的2倍的和写为6+2x,和是负数,∴6+2x<1,故答案为6+2x<1.17、1【分析】连接AC,证明△ADC≌△BDE,则AC=BE,在Rt△ABC中,利用勾股定理可求解问题.【详解】连接AC,根据等边三角形的性质可知AD=BD,ED=CD,∠ADB=∠EDC=60°.∴∠ADC=∠BDE.∴△ADC≌△BDE(SAS).∴AC=BE.∵∠ABC=∠ABD+∠DBC=60°+30°=90°,∴在Rt△ABC中,利用勾股定理可得AC==1.故答案为:1.【点睛】本题主要考查了全等三角形的判定和性质、等边三角形的性质、勾股定理,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.18、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.三、解答题(共66分)19、(1)(2)水流喷出的最大高度为2米【分析】(1)建立平面直角坐标系,待定系数法解题,(2)求出顶点坐标即可.【详解】解:(1)由题意可得,抛物线经过(0,1.5)和(3,0),解得:a=-0.5,c=1.5,即函数表达式为y=.(2)解:∴当x=1时,y取得最大值,此时y=2.答:水流喷出的最大高度为2米.【点睛】本题考查了二次函数的解析式的求法,顶点坐标的应用,中等难度,建立平面直角坐标系是解题关键.20、1.【分析】根据OA、OC的长度结合矩形的性质即可得出点B的坐标,由点B的坐标利用反比例函数图象上点的坐标特征即可求出k值,设正方形ADEF的边长为a,由此即可表示出点E的坐标,再根据反比例函数图象上点的坐标特征即可得出关于a的一元二次方程,解之即可得出结论.【详解】解:∵OA=1,OC=2,四边形OABC是矩形,

∴点B的坐标为(1,2),

∵反比例函数y=的图象过点B,

∴k=1×2=2.

设正方形ADEF的边长为a(a>0),

则点E的坐标为(1+a,a),

∵反比例函数y=的图象过点E,

∴a(1+a)=2,

解得:a=1或a=-3(舍去),

∴正方形ADEF的边长为1.【点睛】本题考查了反比例函数图象上点的坐标特征、矩形的性质以及正方形的性质,根据反比例函数图象上点的坐标特征得出关于a的一元二次方程是解题的关键.21、(1);(2)或;(3)或【分析】(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,根据只有一个交点可求出b,再联立求出P的坐标,从而判断出PQ平分∠AOB,再利用直线表达式求A、B坐标证明OA=OB,从而证出PQ即为最小距离,最后利用勾股定理计算即可;(2)过点作直线,可判断出上的点到直线的最大距离为,然后根据最大距离的范围求出TH的范围,从而得到FT的范围,根据范围建立不等式组求解即可;(3)把点P坐标带入表达式,化简得到关于a、b的等式,从而推出直线的表达式,根据点E的坐标可确定点E所在直线表达式,再根据最小距离为0,推出直线一定与图形K相交,从而分两种情况画图求解即可.【详解】解:(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,∵直线:与H相交于点P,∴,即,只有一个解,∴,解得,∴,联立,解得,即,∴,且点P在第一、三象限夹角的角平分线上,即PQ平分∠AOB,∴为等腰直角三角形,且OP=2,∵直线:,∴当时,,当时,,∴A(-2,0),B(0,-2),∴OA=OB=2,又∵OQ平分∠AOB,∴OQ⊥AB,即PQ⊥AB,∴PQ即为H上的点到直线的最小距离,∵OA=OB,∴,∴AQ=OQ,∴在中,OA=2,则OQ=,∴,即;(2)由题过点作直线,则上的点到直线的最大距离为,∵,即,∴,由题,则,∴,又∵,∴,解得或;(3)∵直线恒过定点,∴把点P代入得:,整理得:,∴,化简得,∴,又∵点恒在直线上,∴直线的表达式为:,∵,∴直线一定与以点为顶点,原点为对角线交点的正方形图形相交,∵,∴点E一定在直线上运动,情形一:如图,当点E运动到所对顶点F在直线上时,由题可知E、F关于原点对称,∵,∴,把点F代入得:,解得:,∵当点E沿直线向上运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向下运动,即;情形二:如图,当点E运动到直线上时,把点E代入得:,解得:,∵当点E沿直线向下运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向上运动,即,综上所述,或.【点睛】本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.22、(1),,;(2)点的坐标为;(3)【分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设点,用三角形的面积公式得到求解即可得出结论;(3)设出点M坐标,表示出MA2=(m-1)2+9,AB2=32,根据等腰三角形的性质建立方程求解即可得出结论.【详解】解:(1)∵直线与反比例函数的图象交与,两点∴,.∴,.∴,.∵点在反比例函数上,∴.∴反比例函数的函数表达式为.(2)设点,∵,∴.∴.∵,∴.∴,∵∴.解得:,∴.∴点的坐标为.(3)设出点M坐标为(m,0),∴MA2=(m-1)2+9,AB2=(1+3)2+(3+1)2=32,∵是以为顶角的等腰三角形∴AM=AB,故(m-1)2+9=32解得m=或m=(舍去)∴【点睛】此题主要考查反比例函数与一次函数综合,解题的关键是熟知待定系数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论