陕西省西安市长安区2022-2023学年数学九年级第一学期期末复习检测试题含解析_第1页
陕西省西安市长安区2022-2023学年数学九年级第一学期期末复习检测试题含解析_第2页
陕西省西安市长安区2022-2023学年数学九年级第一学期期末复习检测试题含解析_第3页
陕西省西安市长安区2022-2023学年数学九年级第一学期期末复习检测试题含解析_第4页
陕西省西安市长安区2022-2023学年数学九年级第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,PA与PB分别与圆O相切与A、B两点,∠P=80o,则∠C=()A.45 B.50 C.55 D.602.如图,在中,,且DE分别交AB,AC于点D,E,若,则△和△的面积之比等于()A. B. C. D.3.已知二次函数和一次函数的图象如图所示,下面四个推断:①二次函数有最大值②二次函数的图象关于直线对称③当时,二次函数的值大于0④过动点且垂直于x轴的直线与的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是或,其中正确的有()A.1个 B.2个 C.3个 D.4个4.下列说法,错误的是()A.为了解一种灯泡的使用寿命,宜采用普查的方法B.一组数据8,8,7,10,6,8,9的众数是8C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差5.如图,在△ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,∠DAE=20°,则∠BAC的度数为()A.70° B.80° C.90° D.100°6.如图,△ABC是⊙O的内接三角形,∠A=55°,则∠OCB为()A.35° B.45° C.55° D.65°7.如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为()A.106° B.116° C.126° D.136°8.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.109.方程5x2﹣2=﹣3x的二次项系数、一次项系数、常数项分别是()A.5、3、﹣2 B.5、﹣3、﹣2 C.5、3、2 D.5、﹣3、210.若m、n是一元二次方程x2-5x-2=0的两个实数根,则m+n-mn的值是()A.-7 B.7 C.3 D.-3二、填空题(每小题3分,共24分)11.如图,已知半⊙O的直径AB=8,将半⊙O绕A点逆时针旋转,使点B落在点B'处,AB'与半⊙O交于点C,若图中阴影部分的面积是8π,则弧BC的长为_____.12.若点(p,2)与(﹣3,q)关于原点对称,则p+q=__.13.在等腰中,,点是所在平面内一点,且,则的取值范围是______.14.如图,一下水管横截面为圆形,直径为,下雨前水面宽为,一场大雨过后,水面上升了,则水面宽为__________.15.已知点P是线段AB的黄金分割点,AP>PB.若AB=1.则AP=__(结果保留根号).16.若2是一元二次方程x2+mx﹣4m=0的一个根,则另一个根是_________.17.圆锥的母线长为5cm,高为4cm,则该圆锥的全面积为_______cm2.18.如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF=______.三、解答题(共66分)19.(10分)如图,已知抛物线经过坐标原点和轴上另一点,顶点的坐标为.矩形的顶点与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=1.(1)求该抛物线所对应的函数关系式;(2)将矩形以每秒个单位长度的速度从图1所示的位置沿轴的正方向匀速平行移动,同时一动点也以相同的速度从点出发向匀速移动,设它们运动的时间为秒,直线与该抛物线的交点为(如图2所示).①当,判断点是否在直线上,并说明理由;②设P、N、C、D以为顶点的多边形面积为,试问是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.20.(6分)如图,点在上,,交于点,点为射线上一动点,平分,连接.(1)求证:;(2)连接,若,则当_______时,四边形是矩形.21.(6分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?22.(8分)(1)问题发现:如图1,在等腰直角三角形中,,将边绕点顺时针旋转90°得到线段,连接,则的面积为__________;(请用含的式子表示的面积;提示:过点作边上的高)(2)类比探究:如图2,在一般的中,,将边绕点顺时针旋转90°得到线段,连接.(1)中的结论是否成立,若成立,请说明理由.(3)拓展应用:如图3,在等腰三角形中,,将边绕点顺时针旋转90°得到线段,连接.试直接用含的式子表示的面积.(不写探究过程)23.(8分)已知:矩形中,,,点,分别在边,上,直线交矩形对角线于点,将沿直线翻折,点落在点处,且点在射线上.(1)如图1所示,当时,求的长;(2)如图2所示,当时,求的长;(3)请写出线段的长的取值范围,及当的长最大时的长.24.(8分)把一根长为米的铁丝折成一个矩形,矩形的一边长为米,面积为S米,(1)求S关于的函数表达式和的取值范围(2)为何值时,S最大?最大为多少?25.(10分)甲、乙两人进行摸牌游戏现有三张除数字外都相同的牌,正面分别标有数字2,5,1.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为4的倍数,则甲获胜;若抽取的数字和为奇数,则乙获胜这游戏公平吗?请用概率的知识加以解释.26.(10分)已知抛物线y=x2﹣2x﹣3与x轴交于点A、B,与y轴交于点C,点D为OC中点,点P在抛物线上.(1)直接写出A、B、C、D坐标;(2)点P在第四象限,过点P作PE⊥x轴,垂足为E,PE交BC、BD于G、H,是否存在这样的点P,使PG=GH=HE?若存在,求出点P坐标;若不存在,请说明理由.(3)若直线y=x+t与抛物线y=x2﹣2x﹣3在x轴下方有两个交点,直接写出t的取值范围.

参考答案一、选择题(每小题3分,共30分)1、B【分析】连接AO,BO,根据题意可得∠PAO=∠PBO=90°,根据∠P=80°得出∠AOB=100°,利用圆周角定理即可求出∠C.【详解】解:连接AO,BO,∵PA与PB分别与圆O相切与A、B两点,∴∠PAO=∠PBO=90°,∵∠P=80°,∴∠AOB=360°-90°-90°-80°=100°,∴∠C=,故选:B.【点睛】本题考查了切线的性质以及圆周角定理,解题的关键是熟知切线的性质以及圆周角定理的内容.2、B【解析】由DE∥BC,利用“两直线平行,同位角相等”可得出∠ADE=∠ABC,∠AED=∠ACB,进而可得出△ADE∽△ABC,再利用相似三角形的面积比等于相似比的平方即可求出结论.【详解】∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴.故选B.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.3、B【分析】根据函数的图象即可得到结论.【详解】解:∵二次函数y1=ax2+bx+c(a≠0)的图象的开口向上,

∴二次函数y1有最小值,故①错误;

观察函数图象可知二次函数y1的图象关于直线x=-1对称,故②正确;

当x=-2时,二次函数y1的值小于0,故③错误;

当x<-3或x>-1时,抛物线在直线的上方,

∴m的取值范围为:m<-3或m>-1,故④正确.

故选B.【点睛】本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键.4、A【分析】利用抽样调查、普查的特点和试用的范围和众数、方差的意义即可做出判断.【详解】A.灯泡数量很庞大,了解它的使用寿命不宜采用普查的方法,应该采用抽查的方法,所以A错误;B.众数是一组数据中出现次数最多的数值,所以8,8,7,10,6,8,9的众数是8正确;C.方差反映了一组数据与其平均数的偏离程度,正确;D.对于简单随机样本,可以用样本的方差去估计总体的方差,正确;故选A.【点睛】本题考查的是调查、众数、方差的意义,能够熟练掌握这些知识是解题的关键.5、D【分析】先根据垂直平分线的特点得出∠B=∠DAB,∠C=∠EAC,然后根据△ABC的内角和及∠DAE的大小,可推导出∠DAB+∠EAC的大小,从而得出∠BAC的大小.【详解】如下图∵DM是线段AB的垂直平分线,∴DA=DB,∴∠B=∠DAB,同理∠C=∠EAC,∵∠B+∠DAB+∠C+∠EAC+∠DAE=180°,∵∠DAE=20°∴∠DAB+∠EAC=80°,∴∠BAC=100°,故选:D.【点睛】本题考查垂直平分线的性质,解题关键是利用整体思想,得出∠DAB+∠EAC=80°.6、A【分析】首先根据圆周角定理求得∠BOC,然后根据三角形内角和定理和等腰三角形的性质即可求得∠OCB.【详解】解:∵∠A=55°,∴∠BOC=55°×2=110°,∵OB=OC,∴∠OCB=∠OBC=(180°-∠BOC)=35°,故答案为A.【点睛】本题主要考查了圆周角定理、等腰三角形的性质以及三角形的内角和定理,掌握并灵活利用相关性质定理是解答本题的关键.7、B【解析】根据圆的内接四边形对角互补,得出∠D的度数,再由轴对称的性质得出∠AEC的度数即可.【详解】解:∵四边形ABCD是圆的内接四边形,∴∠D=180°-∠ABC=180°-64°=116°,∵点D关于的对称点在边上,∴∠D=∠AEC=116°,故答案为B.【点睛】本题考查了圆的内接四边形的性质及轴对称的性质,解题的关键是熟知圆的内接四边形对角互补及轴对称性质.8、D【详解】解:在Rt△ABC中,∠C=90°,sinA==,BC=6∴AB==10,故选D.考点:解直角三角形;9、A【分析】直接利用一元二次方程中各部分的名称分析得出答案.【详解】解:5x1﹣1=﹣3x整理得:5x1+3x﹣1=0,则二次项系数、一次项系数、常数项分别是:5、3、﹣1.故选:A.【点睛】此题主要考查了一元二次方程的一般形式,正确认识各部分是解题关键.10、B【解析】解:∵m、n是一元二次方程x2-5x-2=0的两个实数根,∴m+n=5,mn=-2,∴m+n-mn=5-(-2)=1.故选A.二、填空题(每小题3分,共24分)11、2π【分析】设∠OAC=n°.根据S阴=S半圆+S扇形BAB′−S半圆=S扇形ABB′,构建方程求出n即可解决问题.【详解】解:设∠OAC=n°.∵S阴=S半圆+S扇形BAB′﹣S半圆=S扇形ABB′,∴=8π,∴n=45,∴∠OAC=∠ACO=45°,∴∠BOC=90°,∴的长==2π,故答案为2π.【点睛】本题考查扇形的面积,弧长公式等知识,解题的关键是记住扇形的面积公式,弧长公式.12、1【分析】直接利用关于原点对称点的性质得出p,q的值进而得出答案.【详解】解:∵点(p,2)与(﹣3,q)关于原点对称,∴p=3,q=﹣2,∴p+q=3﹣2=1.故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确掌握关于原点对称点的坐标之间的关系是解题关键.13、【分析】根据题意可知点P在以AB为直径,AB的中点O为圆心的上,然后画出图形,找到P点离C点距离最近的点和最远的点,然后通过勾股定理求出OC的长度,则答案可求.【详解】∴点P在以AB为直径,AB的中点O为圆心的上如图,连接CO交于点,并延长CO交于点当点P位于点时,PC的长度最小,此时当点P位于点时,PC的长度最大,此时故答案为:.【点睛】本题主要考查线段的取值范围,能够找到P点的运动轨迹是圆是解题的关键.14、1【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【详解】解:如图:作OE⊥AB于E,交CD于F,连接OA,OC∵AB=60cm,OE⊥AB,且直径为100cm,∴OA=50cm,AE=∴OE=,∵水管水面上升了10cm,∴OF=40-10=030cm,∴CF=,∴CD=2CF=1cm.故答案为:1.【点睛】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.15、5﹣5【分析】根据黄金分割比的定义计算即可.【详解】根据黄金分割比,有故答案为:.【点睛】本题主要考查黄金分割比,掌握黄金分割比的定义是解题的关键.16、-4【分析】将x=2代入方程求出m的值,再解一元二次方程求出方程的另一个根.【详解】解:将x=2代入方程得,,解得,∴一元二次方程为解方程得:∴方程得另一个根为-4故答案为:-4.【点睛】本题考查的知识点是解一元二次方程,属于基础题目,比较容易掌握.17、14π【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径1+底面周长×母线长÷1.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=14π.故答案为14π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.18、【解析】试题分析:证△AEF≌△ADF,推出AE=AD=5,EF=DF,在△ABE中,由勾股定理求出BE=3,求出CE=2,设CF=x,则EF=DF=4-x,在Rt△CFE中,由勾股定理得出方程(4-x)2=x2+22,求出x即可.试题解析:∵AF平分∠DAE,∴∠DAF=∠EAF,∵四边形ABCD是矩形,∴∠D=∠C=90°,AD=BC=5,AB=CD=4,∵EF⊥AE,∴∠AEF=∠D=90°,在△AEF和△ADF中,,∴△AEF≌△ADF(AAS),∴AE=AD=5,EF=DF,在△ABE中,∠B=90°,AE=5,AB=4,由勾股定理得:BE=3,∴CE=5-3=2,设CF=x,则EF=DF=4-x,在Rt△CFE中,由勾股定理得:EF2=CE2+CF2,∴(4-x)2=x2+22,x=,CF=.考点:矩形的性质.三、解答题(共66分)19、(1)y=-x2+4x;(2)点P不在直线MB上,理由见解析;②当t=时,以点P,N,C,D为顶点的多边形面积有最大值,这个最大值为.【分析】(1)设抛物线解析式为,将代入求出即可解决问题;(2)①由(1)中抛物线的解析式可以求出点的坐标,从而可以求出的解析式,再将点的坐标代入直线的解析式就可以判断点是否在直线上.②设出点,,可以表示出的值,根据梯形的面积公式可以表示出与的函数关系式,从而可以求出结论.【详解】解:(1)设抛物线解析式为,把代入解析式得,解得,,函数解析式为,即.(2)①,当时,,,,,设直线的解析式为:,则,解得:,直线的解析式为:,当时,,,当时,,当时,点不在直线上.②存在最大值.理由如下:点在轴的非负半轴上,且在抛物线上,.点,的坐标分别为、,,,,I.当,即或时,以点,,,为顶点的多边形是三角形,此三角形的高为,,II.当时,以点,,,为顶点的多边形是四边形,,,,,,,时,有最大值为,综合以上可得,当时,以点,,,为顶点的多边形面积有最大值,这个最大值为.【点睛】此题主要考查了待定系数法求函数的解析式,二次函数的最值,二次函数图象上点的坐标特征,三角形的面积公式的运用,梯形的面积公式的运用.根据几何关系巧妙设点,把面积用表示出来,转化为函数最值问题是解题的关键.20、(1)见详解;(2)1【分析】(1)先证,再证,可得,即可得出结论;

(2)根据矩形的性质可得∠BCA=90°,再证△ABC≌△ADC,即可解决问题.【详解】(1)证明:∵平分∴∵∴∵∴∴∴(2)当1时,四边形是矩形.当四边形是矩形,∴∠BCA=90°,

又∵平分,

∴∠BAC=∠DAC∴△ABC≌△ADC,

∴BC=DC又∵

∴DC=1

故答案为1.【点睛】本题考查矩形判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1)y=1440x﹣800;每辆次小车的停车费最少不低于3元;(2)y=﹣120x2+2040x﹣800;(3)每辆次小车的停车费应定为8元,此时的日净收入为7840元.【分析】(1)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式,然后根据日净收入不低于2512元,列出不等式,即可求出x的最小整数值;(2)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式;(3)根据x的取值范围,分类讨论:当x≤5时,根据一次函数的增减性,即可求出此时y的最大值;当x>5时,将二次函数一般式化为顶点式,即可求出此时y的最大值,从而得出结论.【详解】解:(1)由题意得:y=1440x﹣800∵1440x﹣800≥2512,∴x≥2.3∵x取整数,∴x最小取3,即每辆次小车的停车费最少不低于3元.答:每辆小车的停车费最少不低于3元;(2)由题意得:y=[1440﹣120(x﹣5)]x﹣800即y=﹣120x2+2040x﹣800(3)当x≤5时,∵1440>0,∴y随x的增大而增大∴当x=5时,最大日净收入y=1440×5﹣800=6400(元)当x>5时,y=﹣120x2+2040x﹣800=﹣120(x2﹣17x)﹣800=﹣120(x﹣)2+7870∴当x=时,y有最大值.但x只能取整数,∴x取8或1.显然,x取8时,小车停放辆次较多,此时最大日净收入为y=﹣120×+7870=7840(元)∵7840元>6400元∴每辆次小车的停车费应定为8元,此时的日净收入为7840元.答:每辆次小车的停车费应定为8元,此时的日净收入为7840元.【点睛】此题考查的是一次函数和二次函数的综合应用,掌握实际问题中的等量关系、一次函数的增减性和利用二次函数求最值是解决此题的关键.22、(1);(2)成立,理由见解析;(3)【分析】(1)如图1,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a进而由三角形的面积公式得出结论;

(2)如图2,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有.DE=BC=a进而由三角形的面积公式得出结论;

(3)如图3,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.【详解】解:(1)如图1,过点D作DE⊥CB交CB的延长线于E,

∴∠BED=∠ACB=90°,

由旋转知,AB=BD,∠ABD=90°,

∴∠ABC+∠DBE=90°,

∵∠A+∠ABC=90°,

∴∠A=∠DBE,

在△ABC和△BDE中,

∴△ABC≌△BDE(AAS)

∴BC=DE=a.

∵S△BCD=BC⋅DE=

故答案为(2)(1)中结论仍然成立,理由:如图,过点作边上的高,在中,∵,由旋转可知:,∴,∴,又∵,∴,∴,(3).如图3,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,

∴∠AFB=∠E=90°,BF=BC=a.

∴∠FAB+∠ABF=90°

∵∠ABD=90°,

∴∠ABF+∠DBE=90°,

∴∠FAB=∠EBD

∵线段BD是由线段AB旋转得到的,

∴AB=BD

在△AFB和△BED中,

∴△AFB≌△BED(AAS),

∴BF=DE=a.

∵S△BCD=BC⋅DE=⋅a⋅a=.

∴△BCD的面积为.【点睛】此题是几何变换综合题,主要考查了直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形的面积公式的运用,判断出△ABC≌△BDE是解本题的关键.23、(1);(2);(3)【分析】(1)根据翻折性质可得,得,.结合矩形性质得证,根据平行线性质得..设.得,由可求出x;(2)结合(1)方法可得,,再根据勾股定理求PC,再求,中,;(3)作图分析:当P与C重合时,PC最小,是0;当N与C重合时,PC最大=.【详解】解:(1)沿直线翻折,点落在点处,.,.∵四边形是矩形,.,....∵四边形是矩形,...设.∵四边形是矩形,,,..,.解得,即.(2)沿直线翻折,点落在点处,.,.,..,,..,..在中,,...(3)如图当P与C重合时,PC最小,是0;如图当N与C重合时,PC最大===5;所以,此时PB=2,设PM=x,则BM=4-x由PB2+BM2=PM2可得22+(4-x)2=x2解得x=,BM=4-x=所以MN=综合上述:,当最大时.【点睛】考核知识点:矩形性质,直角三角形性质,三角函数.构造直角三角形并解直角三角形是关键.24、(1)S=-+2x(0<x<2);(2)x=1时,面积最大,最大为1米2【分析】(1)根据矩形周长为米,一边长为x,得出另一边为2-x,再根据矩形的面积公式即可得出答案;(2)根据(1)得出的关系式,利用配方法进行整理,可求出函数的最大值,从而得出答案.【详解】解:(1)∵矩形的一边长为x米,∴另一边长为2-x米,∴S=x(2-x)=-x2+2x(0<x<2),即S=-x2+2x(0<x<2);(2)根据(1)得:S=-x2+2x=-(x-1)2+1,∴矩形一边长为1米时,面积最大为1米2,【点睛】本题考查的是二次函数的实际应用以及矩形面积的计算公式,关键是根据矩形的面积公式构建二次函数解决最值问题.25、(1)两人抽取相同数字的概率是;(2)这个游戏公平.【分析】(1)根据题意画出树状图得出所有等情况数和两人抽取相同数字的情况数,然后根据概率公式即可得出答案;(2)根据概率公式求出两人抽取的数字和为4的倍数以及和为奇数的概率,然后进行比较即可得出答案.【详解】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论