山东省滨州市惠民县2022年数学九年级第一学期期末质量检测试题含解析_第1页
山东省滨州市惠民县2022年数学九年级第一学期期末质量检测试题含解析_第2页
山东省滨州市惠民县2022年数学九年级第一学期期末质量检测试题含解析_第3页
山东省滨州市惠民县2022年数学九年级第一学期期末质量检测试题含解析_第4页
山东省滨州市惠民县2022年数学九年级第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.随机抛掷一枚质地均匀的骰子一次,下列事件中,概率最大的是()A.朝上一面的数字恰好是6 B.朝上一面的数字是2的整数倍C.朝上一面的数字是3的整数倍 D.朝上一面的数字不小于22.设抛物线的顶点为M,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1()A. B.C. D.(a为任意常数)3.在下面的计算程序中,若输入的值为1,则输出结果为().A.2 B.6 C.42 D.124.已知抛物线与轴没有交点,那么该抛物线的顶点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个 B.2个 C.3个 D.4个6.已知△ABC∽△A'B'C,AB=8,A'B'=6,则△ABC与△A'B'C的周长之比为()A. B. C. D.7.计算的结果是A.﹣3 B.3 C.﹣9 D.98.函数与()在同一坐标系中的图象可能是()A. B. C. D.9.下列四个交通标志图案中,中心对称图形共有()A.1 B.2 C.3 D.410.三角形两边长分别是和,第三边长是一元二次方程的一个实数根,则该三角形的面积是()A. B. C.或 D.或11.方程的两根之和是()A. B. C. D.12.已知△ABC≌△DEF,∠A=60°,∠E=40°,则∠F的度数为()A.40 B.60 C.80 D.100二、填空题(每题4分,共24分)13.如图等边三角形内接于,若的半径为1,则图中阴影部分的面积等于_________.14.已知y是x的二次函数,y与x的部分对应值如下表:x...-1012...y...0343...该二次函数图象向左平移______个单位,图象经过原点.15.如图,AB为⊙O的直径,点D是弧AC的中点,弦BD,AC交于点E,若DE=2,BE=4,则tan∠ABD=_____.16.如果关于x的方程x2-5x+a=0有两个相等的实数根,那么a=_____.17.反比例函数的图象在每一象限,函数值都随增大而减小,那么的取值范围是__________.18.如图,在平面直角坐标系中,已知点,为平面内的动点,且满足,为直线上的动点,则线段长的最小值为________.三、解答题(共78分)19.(8分)2018年高一新生开始,某省全面启动高考综合改革,实行“3+1+2”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考(1)“1+2”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)(2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率.20.(8分)用适当的方法解方程(1)(2)21.(8分)已知二次函数的顶点坐标为,且经过点,设二次函数图象与轴交于点,求点的坐标.22.(10分)实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)(1)作∠BAC的平分线,交BC于点O.(2)以O为圆心,OC为半径作圆.综合运用:在你所作的图中,(1)AB与⊙O的位置关系是_____.(直接写出答案)(2)若AC=5,BC=12,求⊙O的半径.23.(10分)如图,一次函数的图象与反比例函数的图象交于,两点.(1)求一次函数和反比例函数的表达式;(2)直接写出的面积.24.(10分)如图1,为等腰三角形,是底边的中点,腰与相切于点,底交于点,.(1)求证:是的切线;(2)如图2,连接,交于点,点是弧的中点,若,,求的半径.25.(12分)如图,已知抛物线与y轴交于点,与x轴交于点,点P是线段AB上方抛物线上的一个动点.求这条抛物线的表达式及其顶点坐标;当点P移动到抛物线的什么位置时,使得,求出此时点P的坐标;当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?26.如图,在平面直角坐标系中,的三个顶点坐标分别为.(1)画出,使与关于点成中心对称,并写出点的对应点的坐标_____________;(2)以原点为位似中心,位似比为1:2,在轴的左侧,画出将放大后的,并写出点的对应点的坐标___________________;(3)___________________.

参考答案一、选择题(每题4分,共48分)1、D【解析】根据概率公式,逐一求出各选项事件发生的概率,最后比较大小即可.【详解】解:A.朝上一面的数字恰好是6的概率为:1÷6=;B.朝上一面的数字是2的整数倍可以是2、4、6,有3种可能,故概率为:3÷6=;C.朝上一面的数字是3的整数倍可以是3、6,有2种可能,故概率为:2÷6=;D.朝上一面的数字不小于2可以是2、3、4、5、6,有5种可能,,故概率为:5÷6=∵<<<∴D选项事件发生的概率最大故选D.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.2、D【分析】求出各选项中M、N两点的坐标,再求面积S,进行判断即可;【详解】A选项中,M点坐标为(1,1),N点坐标为(0,-2),,故A选项不满足;B选项中,M点坐标为,N点坐标为(0,),,故B选项不满足;C选项中,M点坐标为(2,),点N坐标为(0,1),,故选项C不满足;D选项中,M点坐标为(,),点N坐标为(0,2),,当a=1时,S=1,故选项D满足;【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.3、C【分析】根据程序框图,计算,直至计算结果大于等于10即可.【详解】当时,,继续运行程序,当时,,继续运行程序,当时,,输出结果为42,故选C.【点睛】本题考查利用程序框图计算代数式的值,按照程序运算的规则进行计算是解题的关键.4、D【分析】根据题目信息可知当y=0时,,此时,可以求出a的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限.【详解】解:∵抛物线与轴没有交点,∴时无实数根;即,,解得,,又∵的顶点的横坐标为:;纵坐标为:;故抛物线的顶点在第四象限.故答案为:D.【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x轴无交点得出时无实数根,再利用根的判别式求解a的取值范围.5、A【解析】结合二次函数解析式,根据函数的性质对各小题分析判断解答即可:①∵2>0,∴图象的开口向上,故本说法错误;②图象的对称轴为直线x=3,故本说法错误;③其图象顶点坐标为(3,1),故本说法错误;④当x<3时,y随x的增大而减小,故本说法正确.综上所述,说法正确的有④共1个.故选A.6、C【分析】直接利用相似三角形的性质周长比等于相似比,进而得出答案.【详解】解:∵△ABC∽△A'B'C,AB=8,A'B'=6,∴△ABC与△A'B'C的周长之比为:8:6=4:1.故选:C.【点睛】本题主要考查了相似三角形的性质,正确得出相似比是解题关键.7、B【分析】利用二次根式的性质进行化简即可.【详解】=|﹣3|=3.故选B.8、D【分析】根据反比例函数与一次函数的图象特点解答即可.【详解】时,,在一、二、四象限,在一、三象限,无选项符合.时,,在一、三、四象限,()在二、四象限,只有D符合;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由的取值确定函数所在的象限.9、B【分析】根据中心对称的概念和各图形的特点即可求解.【详解】∵中心对称图形,是把一个图形绕一个点旋转180°后能和原来的图形重合,∴第一个和第二个都不符合;第三个和第四个图形是中心对称图形,∴中心对称图形共有2个.故选:B.【点睛】本题主要考查中心对称图形的概念,掌握中心对称图形的概念和特点,是解题的关键.10、D【分析】先利用因式分解法解方程得到所以,,再分类讨论:当第三边长为6时,如图,在中,,,作,则,利用勾股定理计算出,接着计算三角形面积公式;当第三边长为10时,利用勾股定理的逆定理可判断此三角形为直角三角形,然后根据三角形面积公式计算三角形面积.【详解】解:,或,所以,,I.当第三边长为6时,如图,在中,,,作,则,,所以该三角形的面积;II.当第三边长为10时,由于,此三角形为直角三角形,所以该三角形的面积,综上所述:该三角形的面积为24或.故选:D.【点睛】本题考查的是利用因式分解法解一元二次方程,等腰三角形的性质,勾股定理及其逆定理,解答此题时要注意分类讨论,不要漏解.11、C【分析】利用两个根和的关系式解答即可.【详解】两个根的和=,故选:C.【点睛】此题考查一元二次方程根与系数的关系式,.12、C【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.二、填空题(每题4分,共24分)13、【分析】如图(见解析),连接OC,根据圆的内接三角形和等边三角形的性质可得,的面积等于的面积、以及的度数,从而可得阴影部分的面积等于钝角对应的扇形面积.【详解】如图,连接OC由圆的内接三角形得,点O为垂直平分线的交点又因是等边三角形,则其垂直平分线的交点与角平分线的交点重合,且点O到AB和AC的距离相等则故答案为:.【点睛】本题考查了圆的内接三角形的性质、等边三角形的性质、扇形面积公式,根据等边三角形的性质得出的面积等于的面积是解题关键.14、2【分析】利用表格中的对称性得:抛物线与x轴另一个交点为(2,0),可得结论.【详解】解:由表格得:二次函数的对称轴是直线x==1.∵抛物线与x轴的一个交点为(-1,0),∴抛物线与x轴另一个交点为(2,0),∴该二次函数图象向左平移2个单位,图象经过原点;或该二次函数图象向右平移1个单位,图象经过原点.故填为2.【点睛】本题考查了二次函数图象与几何变换-平移,根据平移的原则:左加右减进行平移;也可以利用数形结合的思想画图解决.15、【分析】根据圆周角定理得到∠DAC=∠B,得到△ADE∽△BDA,根据相似三角形的性质求出AD,根据正切的定义解答即可.【详解】∵点D是弧AC的中点,∴,∴∠DAC=∠ABD,又∵∠ADE=∠BDA,∴△ADE∽△BDA,∴,即,解得:AD=2,∵AB为⊙O的直径,∴∠ADB=90°,∴tan∠ABD=tan∠DAE.故答案为:.【点睛】本题考查了相似三角形的判定和性质、圆周角定理、正切的定义,掌握相似三角形的判定定理和性质定理是解答本题的关键.16、【分析】若一元二次方程有两个相等的实数根,则方程的根的判别式等于0,由此可列出关于a的等式,求出a的值.【详解】∵关于x的方程x2-5x+a=0有两个相等的实数根,∴△=25-4a=0,即a=.故答案为:.【点睛】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17、m>-1【分析】根据比例系数大于零列式求解即可.【详解】由题意得m+1>0,∴m>-1.故答案为:m>-1.【点睛】本题考查了反比例函数的图象与性质,反比例函数(k是常数,k≠0)的图象是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.18、【分析】由直径所对的圆周角为直角可知,动点轨迹为以中点为圆心,长为直径的圆,求得圆心到直线的距离,即可求得答案.【详解】∵,∴动点轨迹为:以中点为圆心,长为直径的圆,∵,,∴点M的坐标为:,半径为1,过点M作直线垂线,垂足为D,交⊙D于C点,如图:此时取得最小值,∵直线的解析式为:,∴,∴,∵,∴,∴最小值为,故答案为:.【点睛】本题考查了点的轨迹,圆周角定理,圆心到直线的距离,正确理解点到直线的距离垂线段最短是正确解答本题的关键.三、解答题(共78分)19、(1)共有12种等可能结果,见解析;(2)见解析,他们恰好都选中政治的概率为.【解析】(1)利用树状图可得所有等可能结果;(2)画树状图展示所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【详解】解:(1)画树状图如下,由树状图知,共有12种等可能结果;(2)画树状图如下由树状图知,共有9种等可能结果,其中他们恰好都选中政治的只有1种结果,所以他们恰好都选中政治的概率为.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出,再从中选出符合事件或的结果数目,求出概率.20、(1);(2).【分析】(1)利用因式分解法解方程即可;(2)利用直接开方法解方程即可.【详解】(1),,,或,;(2),,,.【点睛】本题考查了解一元二次方程,主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法是解题关键.21、点的坐标为:【分析】以顶点式设函数解析式,将点代入,求出二次函数解析式,再令,求得对应的值,则可得点的坐标.【详解】解:∵二次函数的顶点坐标为∴设其解析式为:.∵函数经过点,∴,∴,∴.令得:∴点的坐标为:.【点睛】此题考查的是求二次函数的解析式和根据解析式求点的坐标,掌握二次函数的顶点式是解决此题的关键.22、(1)作图见解析;(2)作图见解析;综合运用:(1)相切;(2)⊙O的半径为.【解析】综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB与⊙O的位置关系是相切;(2)首先根据勾股定理计算出AB的长,再设半径为x,则OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可.【详解】(1)①作∠BAC的平分线,交BC于点O;②以O为圆心,OC为半径作圆.AB与⊙O的位置关系是相切.(2)相切;∵AC=5,BC=12,∴AD=5,AB==13,∴DB=AB-AD=13-5=8,设半径为x,则OC=OD=x,BO=(12-x)x2+82=(12-x)2,解得:x=.答:⊙O的半径为.【点睛】本题考查了1.作图—复杂作图;2.角平分线的性质;3.勾股定理;4.切线的判定.23、(1)y=﹣x+5,y=;(2)【分析】(1)由点B在反比例函数图象上,可求出点B的坐标,将点A的坐标代入反比例函数即可求出反比例函数解析式;将点A和点B的坐标代入一次函数y=k1x+b即可求出一次函数解析式;(2)延长AB交x轴与点C,由一次函数解析式可找出点C的坐标,通过分割图形利用三角形的面积公式即可得出结论;【详解】⑴解:将A(1,4)代入y=,得k2=4,∴该反比例函数的解析式为y=,当x=4时代入该反比例函数解析式可得y=1,即点B的坐标为(4,1),将A(1,4)B(4,1)代入y=k1x+b中,得,解得k1=﹣1,b=5,∴该一次函数的解析式为y=﹣x+5;(2)设直线y=﹣x+5与x轴交于点C,如图,当y=0时,−x+5=0,解得:x=5,则C(5,0),∴S△AOB=S△AOC−S△BOC=×5×4−×5×1=.【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、三角形的面积公式以及解二元一次方程组,掌握知识点是解题的关键.24、(1)证明见解析;(2)的半径为2.1.【分析】(1)连接,,过作于点,根据三线合一可得,然后根据角平分线的性质可得,然后根据切线的判定定理即可证出结论;(2)连接,过作于点,根据平行线的判定证出,证出,根据角平分线的性质可得,然后利用HL证出,从而得出,设的半径为,根据勾股定理列出方程即可求出结论.【详解】(1)证明:如图,连接,,过作于点.∵,是底边的中点,∴,∵是的切线,∴,∴.∴是的切线;(2)解:如图2,连接,过作于点.∵点是的中点,∴,∴∴,∴在和中,∴∴设的半径为由勾股定理得:DK2+OK2=OD2即,解得:.∴的半径为.【点睛】此题考查的是等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理,掌握等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理是解决此题的关键.25、(1)抛物线的表达式为,抛物线的顶点坐标为;(2)P点坐标为;(3)当时,S有最大值,最大值为1.

【解析】分析:(1)由A、B坐标,利用待定系数法可求得抛物线的表达式,化为顶点式可求得顶点坐标;(2)过P作PC⊥y轴于点C,由条件可求得∠PAC=60°,可设AC=m,在Rt△PAC中,可表示出PC的长,从而可用m表示出P点坐标,代入抛物线解析式可求得m的值,即可求得P点坐标;(3)用t可表示出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论