2025届河南省博爱县九年级数学第一学期期末复习检测试题含解析_第1页
2025届河南省博爱县九年级数学第一学期期末复习检测试题含解析_第2页
2025届河南省博爱县九年级数学第一学期期末复习检测试题含解析_第3页
2025届河南省博爱县九年级数学第一学期期末复习检测试题含解析_第4页
2025届河南省博爱县九年级数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省博爱县九年级数学第一学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图所示,△ABC内接于⊙O,∠C=45°.AB=4,则⊙O的半径为()A. B.4C. D.52.如图,已知AD∥BE∥CF,那么下列结论不成立的是()A. B. C. D.3.一元二次方程x(3x+2)=6(3x+2)的解是()A.x=6 B.x=﹣ C.x1=6,x2=﹣ D.x1=﹣6,x2=4.如图,平行于x轴的直线AC分别交函数y=x(x≥0)与y=x(x≥0)的图象于B,C两点,过点C作y轴的平行线交y=x(x≥0)的图象于点D,直线DE∥AC交y=x(x≥0)的图象于点E,则=()A. B.1 C. D.3﹣5.边长等于6的正六边形的半径等于()A.6 B. C.3 D.6.如图,点,为直线上的两点,过,两点分别作轴的平行线交双曲线()于、两点.若,则的值为()A.12 B.7 C.6 D.47.在一个有10万人的小镇,随机调查了1000人,其中有120人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是()A. B. C. D.8.如图,,垂足为点,,,则的度数为()A. B. C. D.9.如图,△ABC中,D是AB的中点,DE∥BC,连结BE,若S△DEB=1,则S△BCE的值为()A.1 B.2 C.3 D.410.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为().A. B. C. D.11.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(1,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③1a+2b+c<0;④AD+CE=1.其中所有正确结论的序号是()A.①② B.①③ C.②③ D.②④12.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,⊙O的内接四边形ABCD中,∠A=110°,则∠BOD等于________°.14.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.15.布袋中装有3个红球和4个白球,它们除颜色外其余都相同,如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是_______.16.如图,在中,,点D、E分别在边、上,且,如果,,那么________.17.如图,在中,,于,已知,则__________.18.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.三、解答题(共78分)19.(8分)问题呈现:如图1,在边长为1小的正方形网格中,连接格点A、B和C、D,AB和CD相交于点P,求tan∠CPB的值方法归纳:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形,观察发现问题中∠CPB不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点B、E,可得BE∥CD,则∠ABE=∠CPB,连接AE,那么∠CPB就变换到Rt△ABE中.问题解决:(1)直接写出图1中tanCPB的值为______;(2)如图2,在边长为1的正方形网格中,AB与CD相交于点P,求cosCPB的值.20.(8分)阅读材料,解答问题:观察下列方程:①;②;③;…;(1)按此规律写出关于x的第4个方程为,第n个方程为;(2)直接写出第n个方程的解,并检验此解是否正确.21.(8分)某数学兴趣小组根据学习函数的经验,对分段函数的图象与性质进行了探究,请补充完整以下的探究过程.x…-2-101234…y…30-1010-3…(1)填空:a=.b=.(2)①根据上述表格数据补全函数图象;②该函数图象是轴对称图形还是中心对称图形?(3)若直线与该函数图象有三个交点,求t的取值范围.22.(10分)在一个不透明的盒子里装有黑、白两种颜色的球共50个,这些球除颜色外其余完全相同.王颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是试验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024806001800摸到白球的频率0.650.620.5930.6040.60.60.6(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为;(3)试估算盒子里黑、白两种颜色的球各有多少个?23.(10分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F.(1)求证:△FBD∽△FAC;(2)如果BD平分∠ADC,BD=5,BC=2,求DE的长;(3)如果∠CAD=60°,DC=DE,求证:AE=AF.24.(10分)汕头国际马拉松赛事设有“马拉松(公里)”,“半程马拉松(公里)”,“迷你马拉松(公里)”三个项目,小红和小青参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小红被分配到“马拉松(公里)”项目组的概率为___________.(2)用树状图或列表法求小红和小青被分到同一个项目组进行志愿服务的概率.25.(12分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,求∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,试问∠ADE的度数是否发生变化?如果不变化,请给出理由;如果变化了,请求出∠ADE的度数;(3)在(2)的条件下,若AB=6,求CF的最大值.26.如图,已知抛物线与轴相交于、两点,与轴相交于点,若已知点的坐标为.(1)求抛物线的解析式;(2)求线段所在直线的解析式;(3)在抛物线的对称轴上是否存在点,使为等腰三角形?若存在,求出符合条件的点坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、A【解析】试题解析:连接OA,OB.∴在中,故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.2、D【分析】根据平行线分线段成比例定理列出比例式,判断即可.【详解】∵AD∥BE∥CF,∴,成立;,成立,故D错误,成立,故选D.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理,找准对应关系是解题的关键.3、C【分析】根据因式分解法解一元二次方程即可求出答案.【详解】解:∵x(3x+2)=6(3x+2),∴(x﹣6)(3x+2)=0,∴x=6或x=,故选:C.【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.4、D【分析】设点A的纵坐标为b,可得点B的坐标为(,b),同理可得点C的坐标为(b,b),D点坐标(,3b),E点坐标(,3b),可得的值.【详解】解:设点A的纵坐标为b,因为点B在的图象上,所以其横坐标满足=b,根据图象可知点B的坐标为(,b),同理可得点C的坐标为(,b),所以点D的横坐标为,因为点D在的图象上,故可得y==3b,所以点E的纵坐标为3b,因为点E在的图象上,=3b,因为点E在第一象限,可得E点坐标为(,3b),故DE==,AB=所以=故选D.【点睛】本题主要考查二次函数的图象与性质.5、A【分析】根据正六边形的外接圆半径和正六边形的边长组成一个等边三角形,即可求解.【详解】解:正六边形的中心角为310°÷1=10°,那么外接圆的半径和正六边形的边长组成一个等边三角形,∴边长为1的正六边形外接圆的半径是1,即正六边形的半径长为1.故选:A.【点睛】本题考查了正多边形和圆,解答此题的关键是理解正六边形的外接圆半径和正六边形的边长组成的是一个等边三角形.6、C【分析】延长AC交x轴于E,延长BD交x轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据BD=2AC即可得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【详解】延长AC交x轴于E,延长BD交x轴于F.设A、B的横坐标分别是a,b.∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线(x>0)上,则CE,DF,∴BD=BF﹣DF=b,AC=a.又∵BD=2AC,∴b2(a),两边平方得:b22=4(a22),即b24(a2)﹣1.在直角△OCE中,OC2=OE2+CE2=a2,同理OD2=b2,∴4OC2﹣OD2=4(a2)﹣(b2)=1.故选:C.【点睛】本题考查了反比例函数与勾股定理的综合应用,正确利用BD=2AC得到a,b的关系是关键.7、C【解析】试题解析:由题意知:1000人中有120人看中央电视台的早间新闻,∴在该镇随便问一人,他看早间新闻的概率大约是.故选C.【点睛】本题考查概率公式和用样本估计总体,概率计算一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8、B【解析】由平行线的性质可得,继而根据垂直的定义即可求得答案.【详解】,,,,∴∠BCE=90°,∴∠ACE=∠BCE-∠ACB=90°-40°=50°,故选B.【点睛】本题考查了垂线的定义,平行线的性质,熟练掌握相关知识是解题的关键.9、B【解析】根据三角形中位线定理和三角形的面积即可得到结论.【详解】∵D是AB的中点,DE∥BC,∴CE=AE.∴DE=BC,∵S△DEB=1,∴S△BCE=2,故选:B.【点睛】本题考查了三角形中位线定理,熟练掌握并运用三角形中位线定理是解题的关键.10、B【分析】取AB的中点M,连接CM,EM,当CE=CM+EM时,CE的值最大,根据旋转的性质得到AC′=AC=2,由三角形的中位线的性质得到EMAC′=2,根据勾股定理得到AB=2,即可得到结论.【详解】取AB的中点M,连接CM,EM,∴当CE=CM+EM时,CE的值最大.∵将直角边AC绕A点逆时针旋转至AC′,∴AC′=AC=2.∵E为BC′的中点,∴EMAC′=2.∵∠ACB=90°,AC=BC=2,∴AB=2,∴CMAB,∴CE=CM+EM.故选B.【点睛】本题考查了旋转的性质,直角三角形的性质,三角形的中位线的性质,正确的作出辅助线是解题的关键.11、D【分析】①根据抛物线开口方向即可判断;②根据对称轴在y轴右侧即可判断b的取值范围;③根据抛物线与x轴的交点坐标与对称轴即可判断;④根据抛物线与x轴的交点坐标及对称轴可得AD=BD,再根据CE∥AB,即可得结论.【详解】①观察图象开口向下,a<0,所以①错误;②对称轴在y轴右侧,b>0,所以②正确;③因为抛物线与x轴的一个交点B的坐标为(1,0),对称轴在y轴右侧,所以当x=2时,y>0,即1a+2b+c>0,所以>③错误;④∵抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,∴AD=BD.∵CE∥AB,∴四边形ODEC为矩形,∴CE=OD,∴AD+CE=BD+OD=OB=1,所以④正确.综上:②④正确.故选:D.【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是综合运用二次函数图象上点的坐标特征、抛物线与x轴的交点进行计算.12、B【解析】列表得:

1

2

3

4

1

2+1=3

3+1=4

4+1=5

2

1+2=3

3+2=5

4+2=6

3

1+3=4

2+3=5

4+3=7

4

1+4=5

2+4=6

3+4=7

∵共有12种等可能的结果,这两个乒乓球上的数字之和大于5的有4种情况,∴这两个乒乓球上的数字之和大于5的概率为:.故选B.二、填空题(每题4分,共24分)13、140【解析】试题解析::∵∠A=110°

∴∠C=180°-∠A=70°

∴∠BOD=2∠C=140°.14、【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为;故答案为.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.15、【分析】由题意根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.【详解】解:∵一个布袋里装有3个红球和4个白球,共7个球,∴摸出一个球摸到红球的概率为:,故答案为:.【点睛】本题主要考查概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.16、【分析】根据,,得出,利用相似三角形的性质解答即可.【详解】∵,,∴,∴,即,∴,∵,∴,故答案为【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.17、【分析】根据,可设AC=4x,BC=5x,利用勾股定理可得AB=3x,则.【详解】在Rt△ABC中,∵∴设AC=4x,BC=5x∴∴故答案为:.【点睛】本题考查求正切值,熟练掌握三角函数的定义是解题的关键.18、【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.【详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,所以选出的2名同学刚好是一男一女的概率=.故答案为:.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.三、解答题(共78分)19、(1)2;(2)【分析】(1)根据平行四边形的判定及平行线的性质得到∠CPB=∠ABE,利用勾股定理求出AE,BE,AB,证明△ABE是直角三角形,∠AEB=90°,即可求出tanCPB=tanABE;(2)如图2中,取格点D,连接CD,DM.通过平行四边形及平行线的性质得到∠CPB=∠MCD,利用勾股定理的逆定理证明△CDM是直角三角形,且∠CDM=90°,即可得到cos∠CPB=cos∠MCD.【详解】解:(1)连接格点B、E,∵BC∥DE,BC=DE,∴四边形BCDE是平行四边形,∴DC∥BE,∴∠CPB=∠ABE,∵AE=,BE=,AB=,∴△ABE是直角三角形,∠AEB=90°,∴tan∠CPB=tan∠ABE=,故答案为:2;(2)如图2所示,取格点M,连接CM,DM,∵CB∥AM,CB=AM,∴四边形ABCM是平行四边形,∴CM∥AB,∴∠CPB=∠MCD,∵CM=,CD=,MD=,,∴△CDM是直角三角形,且∠CDM=90°,∴cos∠CPB=cos∠MCD=.【点睛】本题考查三角形综合题、平行线的性质、勾股定理及勾股定理逆定理、直角三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会用转化的思想思考问题.20、(1)9,2n+1;(2)2n+1,见解析【分析】(1)观察一系列等式左边分子为连续两个整数的积,右边为从3开始的连续奇数,即可写出第4个方程及第n个方程;(2)归纳总结即可得到第n个方程的解为n与n+1,代入检验即可.【详解】解:(1)x+=x+=9,x+=2n+1;故答案为:x+=9;x+=2n+1.(2)x+=2n+1,观察得:x1=n,x2=n+1,将x=n代入方程左边得:n+n+1=2n+1;右边为2n+1,左边=右边,即x=n是方程的解;将n+1代入方程左边得:n+1+n=2n+1;右边为2n+1,左边=右边,即x=n+1是方程的解,则经检验都为原分式方程的解.【点睛】本题主要考查的是分式方程的解,根据所给方程找出规律是解题的关键.21、(1)﹣1,1;(2)①见解析;②函数图象是中心对称图形;(3)【分析】(1)把(1,0),(2,1)代入y=ax2+bx-3构建方程组即可解决问题.

(2)利用描点法画出函数图象,根据中心对称的定义即可解决问题.

(3)求出直线y=x+t与两个二次函数只有一个交点时t的值即可判断.【详解】解:(1)把(1,0),(2,1)代入y=ax2+bx﹣3得,解得,故答案为:﹣1,1.(2)①描点连线画出函数图象,如图所示;②该函数图象是中心对称图形.(3)由,消去y得到2x2﹣x﹣2﹣2t=0,当△=0时,1+16+16t=0,,由消去y得到2x2﹣7x+2t+6=0,当△=0时,19﹣16t﹣18=0,,观察图象可知:当时,直线与该函数图象有三个交点.【点睛】本题考查中心对称,二次函数的性质,一元二次方程的根的判别式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1)0.6;(2)0.6;(3)盒子里黑颜色的球有20只,盒子白颜色的球有30只【分析】(1)观察表格找到逐渐稳定到的常数即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数,问题得解.【详解】(1)∵摸到白球的频率约为0.6,∴当n很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)∵摸到白球的频率为0.6,∴若从盒子里随机摸出一只球,则摸到白球的概率的估计值为0.6;(3)黑白球共有20只,白球为:50×0.6=30(只),黑球为:50﹣30=20(只).答:盒子里黑颜色的球有20只,盒子白颜色的球有30只.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.23、(1)见解析;(2);(3)见解析【分析】(1)可得出∠ADB=∠ACB,∠AFC=∠BFD,则结论得证;(2)证明△BEC∽△BCD,可得,可求出BE长,则DE可求出;(3)根据圆内接四边形的性质和三角形的内角和定理进行证明AB=AF;根据等腰三角形的判定与性质和圆周角定理可证明AE=AB,则结论得出.【详解】(1)证明:∵∠ADB=∠ACB,∠AFC=∠BFD,∴△FBD∽△FAC;(2)解:∵BD平分∠ADC,∴∠ADB=∠BDC,∵∠ADB=∠ACB,∴∠ACB=∠BDC,∵∠EBC=∠CBD,∴△BEC∽△BCD,∴,∴,∴BE=,∴DE=BD﹣BE=5﹣=;(3)证明:∵∠CAD=60°,∴∠CBD=60°,∠ACD=∠ABD,∵DC=DE,∴∠ACD=∠DEC,∵∠ABC+∠ADC=∠ABC+∠ABF=180°,∴∠FBD=180°,∴∠ABF=∠ADC=120°=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,而∠F=60°﹣∠ACF,∵∠ACF=∠ADE,∴∠ABF=∠F,∴AB=AF.∵四边形ABCD内接于圆,∴∠ABD=∠ACD,又∵DE=DC,∴∠DCE=∠DEC=∠AEB,∴∠ABD=∠AEB,∴AB=AE.∴AE=AF.【点睛】本题是圆的综合题,考查了圆内接四边形的性质,圆周角定理,相似三角形的判定与性质,等腰三角形的判定与性质,角平分线的性质,三角形的内角和定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.24、(1);(2)图见解析,【分析】(1)直接利用概率公式可得;(2)记这三个项目分别为、、,画树状图列出所有可能的结果,从中找到符合条件的结果数,再根据概率公式计算即可.【详解】解:(1);(2)记这三个项目分别为、、,画树状图为:共有种等可能的结果数,其中小红和小青被分配到同一个项目组的结果数为,所以小红和小青被分到同一个项目组进行志愿服务的概率为.【点睛】本题主要考察概率公式、树状图、列表法,熟练掌握公式是关键.25、(1)∠ADE=30°;(2)∠ADE=30°,理由见解析;(3)【分析】(1)利用SAS定理证明△ABD≌△ACE,根据全等三角形的性质得到AD=AE,∠CAE=∠BAD,根据等腰三角形的性质、三角形内角和定理计算即可证明;(2)同(1)的证明方法相同;(3)证明△ADF∽△ACD,根据相似三角形的性质得到,求出AD的最小值,得到AF的最小值,求出CF的最大值.【详解】解:(1)∠ADE=30°.理由如下:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=120°,∴∠ADE=30°;(2)(1)中的结论成立,证明:∵∠BAC=120°,AB=AC,∴∠B=∠A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论