内蒙古师范大第二附属中学2022年数学九年级第一学期期末学业水平测试模拟试题含解析_第1页
内蒙古师范大第二附属中学2022年数学九年级第一学期期末学业水平测试模拟试题含解析_第2页
内蒙古师范大第二附属中学2022年数学九年级第一学期期末学业水平测试模拟试题含解析_第3页
内蒙古师范大第二附属中学2022年数学九年级第一学期期末学业水平测试模拟试题含解析_第4页
内蒙古师范大第二附属中学2022年数学九年级第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,AB为的直径,点C在上,若AB=4,,则O到AC的距离为()A.1 B.2 C. D.2.如图,在平面直角坐标系中,点在直线上,连接,将线段绕点顺时针旋转90°,点的对应点恰好落在直线上,则的值为()A.2 B.1 C. D.3.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm24.如图,在中,是边上的点,以为圆心,为半径的与相切于点,平分,,,的长是()A. B.2 C. D.5.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多 B.白球比红球多 C.红球,白球一样多 D.无法估计6.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为()A. B. C.1 D.7.在下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形 B.圆 C.等腰梯形 D.直角三角形8.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为()A.42° B.48°C.52° D.58°9.已知二次函数和一次函数的图象如图所示,下面四个推断:①二次函数有最大值②二次函数的图象关于直线对称③当时,二次函数的值大于0④过动点且垂直于x轴的直线与的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是或,其中正确的有()A.1个 B.2个 C.3个 D.4个10.某校数学课外小组,在坐标纸上为某湿地公园的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,且k≥2时,,[a]表示非负实数a的整数部分,例如[2.3]=2,,[1.5]=1.按此方案,第2119棵树种植点的坐标应为()A.(6,2121) B.(2119,5) C.(3,413) D.(414,4)11.二次函数y=kx2+2x+1的部分图象如图所示,则k的取值范围是()A.k≤1 B.k≥1 C.k<1 D.0<k<112.下列事件:①经过有交通信号灯的路口,遇到红灯;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数;③长为5cm、5cm、11cm的三条线段能围成一个三角形;④买一张体育彩票中奖。其中随机事件有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.方程的解是__________.14.如图,在中,,是边上的中线,,则的长是__________.15.已知a是方程2x2﹣x﹣4=0的一个根,则代数式4a2﹣2a+1的值为_____.16.进价为元/件的商品,当售价为元/件时,每天可销售件,售价每涨元,每天少销售件,当售价为________元时每天销售该商品获得利润最大,最大利润是________元.17.方程2x2-6x-1=0的负数根为___________.18.如图,⊙O的内接四边形ABCD中,∠A=110°,则∠BOD等于________°.三、解答题(共78分)19.(8分)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式;判断此函数图象的形状;并在图②中画出此函数的图象;(3)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.20.(8分)如图,四边形ABCD的三个顶点A、B、D在⊙O上,BC经过圆心O,且交⊙O于点E,∠A=120°,∠C=30°.(1)求证:CD是⊙O的切线.(2)若CD=6,求BC的长.(3)若⊙O的半径为4,则四边形ABCD的最大面积为.21.(8分)已知在△ABC中,AB=BC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=DC;(2)若CD=6,EC=4,求AB的长.22.(10分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于A(﹣2,0),点B(4,0).(1)求抛物线的解析式;(2)若点M是抛物线上的一动点,且在直线BC的上方,当S△MBC取得最大值时,求点M的坐标;(3)在直线的上方,抛物线是否存在点M,使四边形ABMC的面积为15?若存在,求出点M的坐标;若不存在,请说明理由.23.(10分)如图,二次函数(a0)与x轴交于A、C两点,与y轴交于点B,P为抛物线的顶点,连接AB,已知OA:OC=1:3.(1)求A、C两点坐标;(2)过点B作BD∥x轴交抛物线于D,过点P作PE∥AB交x轴于E,连接DE,①求E坐标;②若tan∠BPM=,求抛物线的解析式.24.(10分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价(元/件)…30405060…每天销售量(件)…500400300200…(1)研究发现,每天销售量与单价满足一次函数关系,求出与的关系式;(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?25.(12分)如图,中,,,为内部一点,且.(1)求证:;(2)求证:;(3)若点到三角形的边,,的距离分别为,,,求证.26.已知:如图,在边长为的正方形中,点、分别是边、上的点,且,连接、,两线相交于点,过点作,且,连接.(1)若,求的长.(2)若点、分别是、延长线上的点,其它条件不变,试判断与的关系,并予以证明.

参考答案一、选择题(每题4分,共48分)1、C【分析】连接OC,BC,过点O作OD⊥AC于D,可得OD//BC,利用平行线段成比例可知和AD=,利用勾股定理,可得,列出方程,即可求出OD的长.【详解】解:连接OC,BC,过点O作OD⊥AC于D,∴∠ADO=90°,∵AB为的直径,AB=4,,∴∠ACB=90°,OA=OC=,∴OD//BC,∴,∴AD=,在中,,∴,解得OD=;故选C.【点睛】本题主要考查了平行线段成比例,勾股定理,掌握平行线段成比例,勾股定理是解题的关键.2、D【分析】根据已知条件可求出m的值,再根据“段绕点顺时针旋转90°”求出点B坐标,代入即可求出b的值.【详解】解:∵点在直线上,∴,∴又∵点B为点A绕原点顺时针旋转90°所得,∴点B坐标为,又∵点B在直线,代入得∴故答案为D.【点睛】本题考查了一次函数与旋转的相关知识,解题的关键是能够根据已知条件得出点B的坐标.3、C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C4、A【分析】由切线的性质得出求出,证出,得出,得出,由直角三角形的性质得出,得出,再由直角三角形的性质即可得出结果.【详解】解:∵与AC相切于点D,故选A.【点睛】本题考查的是切线的性质、直角三角形的性质、等腰三角形的性质、平行线的判定与性质、锐角三角函数的定义等知识,熟练掌握圆的切线和直角三角形的性质,证出是解题的关键.5、A【解析】根据题意可得5位同学摸到红球的频率为,由此可得盒子里的红球比白球多.故选A.6、C【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.7、B【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、圆是轴对称图形,也是中心对称图形,故本选项正确;C、等腰梯形是轴对称图形,不是中心对称图形,故本选项错误;D、直角三角形不一定是轴对称图形,也不是中心对称图形,故本选项错误;故选B.【点睛】本题考查了轴对称图形与中心对称图形,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,识别中心对称图形的关键是寻找对称中心,旋转180°后与原图重合.8、A【解析】试题分析:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.考点:旋转的性质.9、B【分析】根据函数的图象即可得到结论.【详解】解:∵二次函数y1=ax2+bx+c(a≠0)的图象的开口向上,

∴二次函数y1有最小值,故①错误;

观察函数图象可知二次函数y1的图象关于直线x=-1对称,故②正确;

当x=-2时,二次函数y1的值小于0,故③错误;

当x<-3或x>-1时,抛物线在直线的上方,

∴m的取值范围为:m<-3或m>-1,故④正确.

故选B.【点睛】本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键.10、D【分析】根据已知分别求出1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),当6≤k≤11时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通过观察得到点的坐标特点,进而求解.【详解】解:由题可知1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),当6≤k≤11时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),……通过以上数据可得,P点的纵坐标5个一组循环,∵2119÷5=413…4,∴当k=2119时,P点的纵坐标是4,横坐标是413+1=414,∴P(414,4),故选:D.【点睛】本题考查点的坐标和探索规律;能够理解题意,通过已知条件探索点的坐标循环规律是解题的关键.11、D【分析】由二次函数y=kx2+2x+1的部分图象可知开口朝上以及顶点在x轴下方进行分析.【详解】解:由图象可知开口朝上即有0<k,又因为顶点在x轴下方,所以顶点纵坐标从而解得k<1,所以k的取值范围是0<k<1.故选D.【点睛】本题考查二次函数图像性质,根据开口朝上以及顶点在x轴下方分别代入进行分析.12、B【分析】由题意直接根据事件发生的可能性大小对各事件进行依次判断.【详解】解:①经过有交通信号灯的路口,遇到红灯,是随机事件;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数,是必然事件;③长为5cm、5cm、11cm的三条线段能围成一个三角形,是不可能事件;④买一张体育彩票中奖,是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每题4分,共24分)13、【分析】先通过移项将等号右边多项式移到左边,再利用提公因式法因式分解,即可得出方程的根.【详解】解:移项得:提公因式得:解得:;故答案为:.【点睛】本题考查一元二次方程因式分解的解法.在解一元二次方程的时候,一定要先观察方程的形式,如果遇到了相同的因式,先将他们移到方程等号的一侧,看能否利用提公因式解方程,观察以及积累是快速解题的关键.14、10【分析】根据直角三角形斜边中线等于斜边的一半直接求解即可.【详解】解:∵在中,,是边上的中线∴∴AB=2CD=10故答案为:10【点睛】本题考查直角三角形斜边中线等于斜边的一半,掌握直角三角形的性质是本题的解题关键.15、1【分析】直接把a的值代入得出2a2−a=4,进而将原式变形得出答案.【详解】∵a是方程2x2=x+4的一个根,∴2a2﹣a=4,∴4a2﹣2a+1=2(2a2﹣a)+1=2×4+1=1.故答案为1.【点睛】此题主要考查了一元二次方程的解,正确将原式变形是解题关键.16、55,3.【解析】试题分析:设售价为元,总利润为元,则,∴时,获得最大利润为3元.故答案为55,3.考点:3.二次函数的性质;3.二次函数的应用.17、【分析】先计算判别式的值,再利用求根公式法解方程,然后找出负数根即可.【详解】△=(﹣6)2﹣4×2×(﹣1)=44,x==,所以x1=>1,x2=<1.即方程的负数根为x=.故答案为x=.【点睛】本题考查了公式法解一元二次方程:用求根公式解一元二次方程的方法是公式法.18、140【解析】试题解析::∵∠A=110°

∴∠C=180°-∠A=70°

∴∠BOD=2∠C=140°.三、解答题(共78分)19、(1)圆P的半径为;(2)画出函数图象,如图②所示;见解析;(3)cos∠APD==.【解析】(1)由题意得到AP=PB,求出y的值,即为圆P的半径;

(2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;

​(3)画出相应图形,求出m的值,进而确定出所求角的余弦值即可.【详解】(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到,解得:y=,则圆P的半径为(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:图象为开口向上的抛物线,画出函数图象,如图②所示;(3)连接CD,连接AP并延长,交x轴于点F,设PE=a,则有EF=a+1,ED=,∴D坐标为(1+,a+1),代入抛物线解析式得:,解得:或(舍去),即PE=,在Rt△PED中,PE=,PD=1,则cos∠APD==.【点睛】本题属于圆的综合题,涉及的知识点主要有两点间的距离公式,勾股定理,二次函数的图象和性质,圆的定义,圆的切线的性质,弄清题意是解决本题的关键.20、(1)证明见解析;(2);(3).【分析】(1)连接、,根据圆内接四边形的性质得到,求得,又点在上,于是得到结论;(2)由(1)知:又,设为,则为,根据勾股定理即可得到结论;(3)连接BD,OA,根据已知条件推出当四边形ABOD的面积最大时,四边形ABCD的面积最大,当OA⊥BD时,四边形ABOD的面积最大,根据三角形和菱形的面积公式即可得到结论.【详解】解:(1)证明:连接、,四边形为圆内接四边形,,,,又点在上,是的切线;(2)由(1)知:又,,设为,则为,在中,,即,,又,,;(3)连接,,,,,,,,,,,当四边形的面积最大时,四边形的面积最大,当时,四边形的面积最大,四边形的最大面积,故答案为:.【点睛】本题考查了圆的综合题,切线的判定,勾股定理,三角形的面积的计算,正确的作出辅助线是解题的关键.21、(1)证明见解析;(2)AB=6.【分析】(1)根据圆内接四边形的性质得出∠DEC=∠A,根据等腰三角形的性质得出∠A=∠C,求出∠DEC=∠C,根据等腰三角形的判定得出即可;

(2)连接BD,根据圆周角定理求出∠ADB=90°,根据等腰三角形的性质求出AC长,再求出△DEC∽△BAC,得出比例式,即可求出答案.【详解】(1)证明:∵A、B、E、D四点共圆,∴∠DEC=∠A,∵AB=BC,∴∠A=∠C,∴∠DEC=∠C,∴ED=DC;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,即BD⊥AC,∵AB=BC,CD=6,∴AD=DC=6,∴AC=12,∵∠A=∠DEC,∠C=∠C,∴△DEC∽△BAC,∴,∴,解得:BC=6,∵AB=BC,∴AB=6.【点睛】本题考查了圆内接四边形的性质,圆周角定理,相似三角形的性质和判定,等腰三角形的判定和性质等知识点,能综合运用定理进行推理是解此题的关键.22、(1)y=﹣x2+x+4;(2)(2,4);(3)存在,(1,)或(3,)【分析】(1)抛物线的表达式为::y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),故-8a=4,即可求解;(2)根据题意列出S△MBC=MH×OB=2(﹣x2+x+4+x﹣4)=﹣x2+4x,即可求解;(3)四边形ABMC的面积S=S△ABC+S△BCM=6×4+(﹣x2+4x)=15,,即可求解.【详解】解:(1)抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),故﹣8a=4,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+4;(2)过点M作MH∥y轴交BC于点H,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+4,设点M(x,﹣x2+x+4),则点H(x,﹣x+4),S△MBC=MH×OB=2(﹣x2+x+4+x﹣4)=﹣x2+4x,∵﹣1<0,故S有最大值,此时点M(2,4);(3)四边形ABMC的面积S=S△ABC+S△BCM=×6×4+(﹣x2+4x)=15,解得:x=1或3,故点M(1,)或(3,).【点睛】本题考查的是二次函数综合运用,考查了一次函数、面积的计算等知识,其中面积的计算是解答本题的难点.23、(1)A(-1,0),C(3,0);(2)①E(-,0);②原函数解析式为:.【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P作PE⊥x轴于点E,所以设A(-m,0),C(3m,0),结合对称轴即可求出结果;(2)①过点P作PM⊥x轴于点M,连接PE,DE,先证明△ABO△EPM得到,找出OE=,再根据A(-1,0)代入解析式得:3a+c=0,c=-3a,即可求出OE的长,则坐标即可找到;②设PM交BD于点N;根据点P(1,c-a),BN‖AC,PM⊥x轴表示出PN=-a,再由tan∠BPM=求出a,结合(1)知道c,即可知道函数解析式.【详解】(1)∵二次函数为:(a<0),∴对称轴为,过点P作PM⊥x轴于点M,则M(1,0),M为AC中点,又OA:OC=1:3,设A(-m,0),C(3m,0),∴,解得:m=1,∴A(-1,0),C(3,0),(2)①做图如下:∵PE∥AB,∴∠BAO=∠PEM,又∠AOB=∠EMP,∴△ABO△EPM,∴,由(1)知:A(-1,0),C(3,0),M(1,0),B(0,c),P(1,c-a),∴,∴OE=,将A(-1,0)代入解析式得:3a+c=0,∴c=-3a,∴,∴E(-,0);②设PM交BD于点N;∵(a<0),∴x=1时,y=c-a,即点P(1,c-a),∵BN‖AC,PM⊥x轴∴NM=BO=c,BN=OM=1,∴PN=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论