江苏省如皋市南片区八校联考2022-2023学年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
江苏省如皋市南片区八校联考2022-2023学年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
江苏省如皋市南片区八校联考2022-2023学年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
江苏省如皋市南片区八校联考2022-2023学年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
江苏省如皋市南片区八校联考2022-2023学年九年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3 C.4 D.52.二次函数,当时,则()A. B. C. D.3.如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20

m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5

m,两个路灯的高度都是9

m,则两路灯之间的距离是()

A.24

m B.25

m C.28

m D.30

m4.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=ADC.AB=AF D.BE=AD﹣DF5.若点M在抛物线的对称轴上,则点M的坐标可能是()A.(3,-4) B.(-3,0) C.(3,0) D.(0,-4)6.已知Rt△ABC,∠ACB=90º,BC=10,AC=20,点D为斜边中点,连接CD,将△BCD沿CD翻折得△B’CD,B’D交AC于点E,则的值为()A. B. C. D.7.如图,菱形在第一象限内,,反比例函数的图象经过点,交边于点,若的面积为,则的值为()A. B. C. D.48.如图,已知,是的中点,且矩形与矩形相似,则长为()A.5 B. C. D.69.如图,⊙O的圆周角∠A=40°,则∠OBC的度数为()A.80° B.50° C.40° D.30°10.使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A. B. C. D.二、填空题(每小题3分,共24分)11.因式分解:_______;12.二次函数的最大值是__________.13.从地面竖直向上抛出一小球,小球离地面的高度h(米)与小球运动时间t(秒)之间关系是h=30t﹣5t2(0≤t≤6),则小球从抛出后运动4秒共运动的路径长是________米.14.设,是关于的一元二次方程的两根,则______.15.请写出一个符合以下两个条件的反比例函数的表达式:___________________.①图象位于第二、四象限;②如果过图象上任意一点A作AB⊥x轴于点B,作AC⊥y轴于点C,那么得到的矩形ABOC的面积小于1.16.如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时水深为______米.17.若关于的方程的一个根是1,则的值为______.18.已知,.且,设,则的取值范围是______.三、解答题(共66分)19.(10分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.20.(6分)已知:在平面直角坐标系中,抛物线()交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2.(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设△PAD的面积为S,令W=t·S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.21.(6分)如图,平面直角坐标系内,二次函数的图象经过点,与轴交于点.求二次函数的解析式;点为轴下方二次函数图象上一点,连接,若的面积是面积的一半,求点坐标.22.(8分)某校组织了一次七年级科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?23.(8分)已知:如图,AE∥CF,AB=CD,点B、E、F、D在同一直线上,∠A=∠C.求证:(1)AB∥CD;(2)BF=DE.24.(8分)解下列方程:配方法.25.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为B(3,4)、A(﹣3,2)、C(1,0),正方形网格中,每个小正方形的边长是一个单位长度.(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格上画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,点C2的坐标是;(画出图形)(3)若M(a,b)为线段AC上任一点,写出点M的对应点M2的坐标.26.(10分)如图,是的直径,直线与相切于点.过点作的垂线,垂足为,线段与相交于点.(1)求证:是的平分线;(2)若,求的长.

参考答案一、选择题(每小题3分,共30分)1、D【解析】设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=1.故选D.2、D【分析】因为=,对称轴x=1,函数开口向下,分别求出x=-1和x=1时的函数值即可;【详解】∵=,∴当x=1时,y有最大值5;当x=-1时,y==1;当x=2时,y==4;∴当时,;故选D.【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.3、D【解析】由题意可得:EP∥BD,所以△AEP∽△ADB,所以,因为EP=1.5,BD=9,所以,解得:AP=5,因为AP=BQ,PQ=20,所以AB=AP+BQ+PQ=5+5+20=30,故选D.点睛:本题主要考查相似三角形的对应边成比例在解决实际问题中的应用,应用相似三角形可以间接地计算一些不易直接测量的物体的高度和宽度,解题时关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.4、B【解析】A.由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故A正确;B.∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故B错误;C.由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故C正确;D.由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故D正确;故选B.5、B【解析】试题解析:∴对称轴为x=-3,∵点M在对称轴上,∴M点的横坐标为-3,故选B.6、A【分析】如图,过点B作BH⊥CD于H,过点E作EF⊥CD于F,由勾股定理可求AB的长,由锐角三角函数可求BH,CH,DH的长,由折叠的性质可得∠BDC=∠B'DC,S△BCD=S△DCB'=50,利用锐角三角函数可求EF=,由面积关系可求解.【详解】解:如图,过点B作BH⊥CD于H,过点E作EF⊥CD于F,∵∠ACB=90°,BC=10,AC=20,∴AB=,S△ABC=×10×20=100,∵点D为斜边中点,∠ACB=90°,∴AD=CD=BD=,∴∠DAC=∠DCA,∠DBC=∠DCB,∴sin∠BCD=sin∠DBC=,∴,∴BH=,∴CH=,∴DH=,∵将△BCD沿CD翻折得△B′CD,∴∠BDC=∠B'DC,S△BCD=S△DCB'=50,∴tan∠BDC=tan∠B'DC=,∴,∴设DF=3x,EF=4x,∵tan∠DCA=tan∠DAC=,∴,∴FC=8x,∵DF+CF=CD,∴3x+8x=,∴x=,∴EF=,∴S△DEC=×DC×EF=,∴S△CEB'=50-=,∴,故选:A.【点睛】本题考查了翻折变换,直角三角形的性质,锐角三角函数的性质,勾股定理等知识,添加恰当辅助线是本题的关键.7、C【分析】过A作AE⊥x轴于E,设OE=,则AE=,OA=,即菱形边长为,再根据△AOD的面积等于菱形面积的一半建立方程可求出,利用点A的横纵坐标之积等于k即可求解.【详解】如图,过A作AE⊥x轴于E,设OE=,在Rt△AOE中,∠AOE=60°∴AE=,OA=∴A,菱形边长为由图可知S菱形AOCB=2S△AOD∴,即∴∴故选C.【点睛】本题考查了反比例函数与几何综合问题,利用特殊角度的三角函数值表示出菱形边长及A点坐标是解决本题的关键.8、B【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:∵矩形ABDC与矩形ACFE相似,∴,∵,是的中点,∴AE=5∴,解得,AC=5,故选B.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.9、B【分析】然后根据圆周角定理即可得到∠OBC的度数,由OB=OC,得到∠OBC=∠OCB,根据三角形内角和定理计算出∠OBC.【详解】∵∠A=40°.

∴∠BOC=80°,

∵OB=OC,

∴∠OBC=∠OCB=50°,

故选:B.【点睛】本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半;也考查了等腰三角形的性质以及三角形的内角和定理.10、C【解析】根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.二、填空题(每小题3分,共24分)11、(a-b)(a-b+1)【解析】原式变形后,提取公因式即可得到结果.【详解】解:原式=(a-b)2+(a-b)=(a-b)(a-b+1),

故答案为:(a-b)(a-b+1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.12、1【分析】二次函数的顶点式在x=h时有最值,a>0时有最小值,a<0时有最大值,题中函数,故其在时有最大值.【详解】解:∵,∴有最大值,当时,有最大值1.故答案为1.【点睛】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.13、1【分析】根据题目中的函数解析式可以求得h的最大值,从而可以求得小球从抛出后运动4秒共运动的路径长.【详解】解:∵h=30t−5t2=−5(t−3)2+45(0≤t≤6),∴当t=3时,h取得最大值,此时h=45,∴小球从抛出后运动4秒共运动的路径长是:45+[45−(30×4−5×42)]=1(米),故答案为1.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的路径的长.14、-5.【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方程的两根,那么,.15、,答案不唯一【解析】设反比例函数解析式为y=,根据题意得k<0,|k|<1,当k取−5时,反比例函数解析式为y=−.故答案为y=−.答案不唯一.16、【详解】解:作出弧AB的中点D,连接OD,交AB于点C.则OD⊥AB.AC=AB=0.8m.在直角△OAC中,OC===0.6m.则水深CD=OD-OC=1-0.6=0.4m.【点睛】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.17、-6【分析】把x=1代入原方程就可以得到一个关于k的方程,解这个方程即可求出k的值.【详解】把代入方程得到,解得.故答案为:−6.【点睛】本题考查了一元二次方程的解,将方程的根代入并求值是解题的关键.18、【分析】先根据已知得出n=1-m,将其代入y中,得出y关于m的二次函数即可得出y的范围【详解】解:∵∴n=1-m,∴∵,∴,∴当m=时,y有最小值,当m=0时,y=1当m=1时,y=1∴故答案为:【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的性质是解题的关键三、解答题(共66分)19、(1)见解析;(2)3【分析】(1)只要证明∠DBF=∠DAC,即可判断.(2)利用相似三角形的性质即可解决问题.【详解】(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)∵tan∠ABD=1,∠ADB=90°∴=1,∴AD=BD,∵△ACD∽△BFD,∴,∴BF=AC=3【点睛】本题考查相似三角形的性质和判定,同角的余角相等,直角三角形两锐角互余等知识,解题的关键是正确寻找相似三角形,利用新三角形的性质解决问题20、(1),D(-2,4).(2)①当t=3时,W有最大值,W最大值=1.②存在.只存在一点P(0,2)使Rt△ADP与Rt△AOC相似.【解析】(1)由抛物线的对称轴求出a,就得到抛物线的表达式了;

(2)①下面探究问题一,由抛物线表达式找出A,B,C三点的坐标,作DM⊥y轴于M,再由面积关系:SPAD=S梯形OADM-SAOP-SDMP得到t的表达式,从而W用t表示出来,转化为求最值问题.

②难度较大,运用分类讨论思想,可以分三种情况:

(1)当∠P1DA=90°时;(2)当∠P2AD=90°时;(3)当AP3D=90°时。【详解】解:(1)∵抛物线y=ax2-x+3(a≠0)的对称轴为直线x=-2.∴D(-2,4).(2)探究一:当0<t<4时,W有最大值.

∵抛物线交x轴于A、B两点,交y轴于点C,

∴A(-6,0),B(2,0),C(0,3),

∴OA=6,OC=3.

当0<t<4时,作DM⊥y轴于M,

则DM=2,OM=4.

∵P(0,t),

∴OP=t,MP=OM-OP=4-t.

∵S三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP=12-2t

∴W=t(12-2t)=-2(t-3)2+1

∴当t=3时,W有最大值,W最大值=1.

探究二:

存在.分三种情况:

①当∠P1DA=90°时,作DE⊥x轴于E,则OE=2,DE=4,∠DEA=90°,

∴AE=OA-OE=6-2=4=DE.

∴∠DAE=∠ADE=45°,∴∠P1DE=∠P1DA-∠ADE=90°-45°=45度.

∵DM⊥y轴,OA⊥y轴,

∴DM∥OA,

∴∠MDE=∠DEA=90°,

∴∠MDP1=∠MDE-∠P1DE=90°-45°=45度.

∴P1M=DM=2,此时又因为∠AOC=∠P1DA=90°,

∴Rt△ADP1∽Rt△AOC,

∴OP1=OM-P1M=4-2=2,

∴P1(0,2).

∴当∠P1DA=90°时,存在点P1,使Rt△ADP1∽Rt△AOC,

此时P1点的坐标为(0,2)

②当∠P2AD=90°时,则∠P2AO=45°,∴△P2AD与△AOC不相似,此时点P2不存在.③当∠AP3D=90°时,以AD为直径作⊙O1,则⊙O1的半径圆心O1到y轴的距离d=4.

∵d>r,

∴⊙O1与y轴相离.

不存在点P3,使∠AP3D=90度.

∴综上所述,只存在一点P(0,2)使Rt△ADP与Rt△AOC相似.21、(1);(2)点坐标为或【分析】(1)根据A、B、C三点坐标,运用待定系数法即可解答;(2)由的面积是面积的一半,则D点的纵坐标为-3,令y=3,求得x的值即为D点的纵坐标.【详解】解:设D的坐标为(x,yD)∵的面积是面积的一半∴,又∵点在轴下方,即.令y=-3,即解得:,,∴点坐标为或【点睛】本题主要考查了求二次函数解析式和三角形的面积,确定二次函数解析式并确定△ABD的高是解答本题的关键.22、(1)B班参赛作品有25件;(2)补图见解析;(3)C班的获奖率高.【分析】(1)直接利用扇形统计图中百分数,求出B班所占的百分比,进而求出B班参赛作品数;(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量,从而补全统计图;(3)分别求出各班的获奖率,进行比较从而得出答案.【详解】解:(1)B班参赛作品有;(2)C班参赛作品获奖数量为,补图如下:;(3)A班的获奖率为,B班的获奖率为,C班的获奖率为50%,D班的获奖率为,故C班的获奖率高.23、(1)见解析;(2)见解析.【解析】(1)由△ABE≌△CDF可得∠B=∠D,就可得到AB∥CD;(2)要证BF=DE,只需证到△ABE≌△CDF即可.【详解】解:(1)∵AB∥CD,∴∠B=∠D.在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴∠B=∠D,∴AB∥CD;(2)∵△ABE≌△CDF,∴BE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论