版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列计算正确的是().A. B.=1C. D.2.将直线y=-2x向上平移后得到直线AB,直线AB经过点(1,4),则直线AB的函数表达式为()A.y=2x+2 B.y=2x-6 C.y=-2x+3 D.y=-2x+63.如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为()A. B. C. D.4.若分式有意义,则a的取值范围是()A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切实数5.某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务.设原计划每天铺设管道x米,根据题意,则下列方程正确的是()A. B.C. D.6.如图,在数轴上,点A表示的数是,点B,C表示的数是两个连续的整数,则这两个整数为()A.-5和-4 B.-4和-3 C.3和4 D.4和57.某车间20名工人每天加工零件数如下表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是().A.5,5 B.5,6 C.6,6 D.6,58.在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是()A.4 B.6 C.8 D.109.比较2,,的大小,正确的是()A. B.C. D.10.如果,那么的值为()A. B. C.3 D.-3二、填空题(每小题3分,共24分)11.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿y轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC的顶点C的坐标为____.12.如图,在中,,,垂足分别为,,,交于点.请你添加一个适当的条件,使≌.添加的条件是:____.(写出一个即可)13.若分式的值为0,则x=_____.14.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为.15.已知am=2,an=3,那么a2m+n=________.16.某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的,按此建议,一辆加满油的该型号汽车最多行驶的路程是_____km.17.比较大小:_____.18.已知,y=(m+1)x3﹣|m|+2是关于x的一次函数,并且y随x的增大而减小,则m的值为_____.三、解答题(共66分)19.(10分)计算(1);(2)20.(6分)如图,一次函数y=kx+b的图象经过点A(﹣2,6),与x轴交于点B,与正比例函数y=3x的图象交于点C,点C的横坐标为1.(1)求AB的函数表达式;(2)若点D在y轴负半轴,且满足S△COD=S△BOC,求点D的坐标.21.(6分)如图,已知点坐标为点坐标为点坐标为.(1)在图中画出关于轴对称的,写出点的坐标:,,;(2)求的面积.22.(8分)如图①,在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A,B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G.(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE,CG的数量关系是否发生变化,请证明你的结论;(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,直接写出答案BE=23.(8分)共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?24.(8分)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书节活动,随机调查了八年级名学生最近一周的读书时间,统计数据如下表:时间/小时人数(1)写出这名学生读书时间的众数、中位数、平均数;(2)根据上述表格补全下面的条形统计图,25.(10分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.(1)求关于的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?26.(10分)已知,求代数式的值.
参考答案一、选择题(每小题3分,共30分)1、D【分析】先把各二次根式化为最简二次根式,再合并同类二次根式,或者根据乘法公式进行计算.【详解】A选项:,本选项错误;B选项:,本选项错误;C选项:,本选项错误;D选项:,本选项正确.故选D.【点睛】本题考查了二次根式的混合运算,关键要先把各二次根式化为最简二次根式.2、D【分析】设直线AB的解析式为y=kx+b,根据平移时k的值不变可得k=-2,把(1,4)代入即可求出b的值,即可得答案.【详解】设直线AB的解析式为y=kx+b,∵将直线y=-2x向上平移后得到直线AB,∴k=-2,∵直线AB经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB的解析式为:y=-2x+6,故选:D.【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k值不变.3、C【分析】根据多边形的内角和=180°(n-2),其中n为正多边形的边数,计算即可【详解】解:正六边形的内角和为:180°×(6-2)=720°故选C.【点睛】此题考查的是求正六边形的内角和,掌握多边形的内角和公式是解决此题的关键.4、A【解析】分析:根据分母不为零,可得答案详解:由题意,得,解得故选A.点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.5、B【解析】关键描述语为:“提前了1天完成任务”;等量关系为:原计划用时-实际用时=1.【详解】原计划用时为天,而实际用时=天.那么方程应该表示为.故选B.【点睛】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.6、B【分析】先估算的大小,再求出﹣的大小即可判断.【详解】∵9<13<16,∴3<<4,∴﹣4<﹣<﹣3,故选:B.【点睛】本题考查了实数与数轴,解题关键是会估算二次根式的大小.7、B【分析】根据众数、中位数的定义分别进行解答即可.【详解】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8、C【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选C.【点睛】本题考查等腰三角形的判定,解题的关键是掌握等腰三角形的判定,分情况讨论解决.9、C【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【详解】解:∵26=64,,,而49<64<125∴∴故选C.【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.10、A【分析】根据比的性质将原式进行变形求解即可.【详解】∵∴解得,故选:A.【点睛】本题考查了比例的性质,掌握“内项之积等于外项之积”是解此题的关键.二、填空题(每小题3分,共24分)11、(2,).【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为1+2×=2,点C到AB的距离为=,∴C(2,+1),把等边△ABC先沿y轴翻折,得C’(-2,+1),再向下平移1个单位得C’’(-2,)故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y轴右侧,点C的横坐标为2,纵坐标为+1﹣2020=﹣2019,所以,点C的对应点C'的坐标是(2,﹣2019).故答案为:(2,﹣2019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y轴右侧是解题的关键.12、AF=CB或EF=EB或AE=CE【分析】根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,
∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE=90°,∴∠BAD=∠BCE,
所以根据AAS添加AF=CB或EF=EB;
根据ASA添加AE=CE.
可证△AEF≌△CEB.
故答案为:AF=CB或EF=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.13、-1【分析】根据分式值为零的条件计算即可;【详解】解:由分式的值为零的条件得x+1=0,x﹣2≠0,即x=﹣1且x≠2故答案为:﹣1.【点睛】本题主要考查了分式值为零的条件,准确计算是解题的关键.14、(2,-3)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),据此即可求得点(2,3)关于x轴对称的点的坐标.【详解】∵点(2,3)关于x轴对称;
∴对称的点的坐标是(2,-3).
故答案为(2,-3).15、12【分析】逆用同底数幂的乘法法则和幂的乘方法则计算即可.【详解】∵am=2,an=3,∴a2m+n=a2m×an=×an=4×3=12.故答案为12.【点睛】本题考查了幂的乘方及同底数幂的乘法的逆运算,熟练掌握幂的乘方和同底数幂的乘法运算法则是解答本题的关键,即,特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识.16、1.【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×,解得:x≤1,答:该辆汽车最多行驶的路程是1km,故答案为:1.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.17、>【分析】先把两个实数平方,然后根据实数的大小的比较方法即可求解.【详解】∵()2=75>()2=72,而>0,>0,∴>.故答案为:>.【点睛】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.18、﹣1.【分析】根据一次函数定义可得3﹣|m|=1,解出m的值,然后再根据一次函数的性质可得m+1<0,进而可得确定m的取值.【详解】解:∵y=(m+1)x3﹣|m|+1是关于x的一次函数,∴3﹣|m|=1,∴m=±1,∵y随x的增大而减小,∴m+1<0,∴m<﹣1,∴m=﹣1,故答案为:﹣1.【点睛】此题主要考查了一次函数的性质和定义,关键是掌握一次函数的自变量的次数为1,一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.三、解答题(共66分)19、(1);(2).【分析】(1)原式利用绝对值的意义,负整数指数幂法则计算即可求出值;(2)方程组利用加减消元法求出解即可.【详解】(1)=;(2)①×2得:③,③+②得:,∴,代入①得:,∴,∴原方程组的解为:.【点睛】本题考查了解二元一次方程组以及实数的运算,熟练掌握运算法则是解本题的关键.20、(1)y=﹣x+4;(2)D(0,﹣4)【分析】(1)先求得点C的坐标,再根据待定系数法即可得到AB的函数表达式;
(2)设D(0,m)(m<0),依据S△COD=S△BOC,即可得出m=-4,进而得到D(0,-4).【详解】解:(1)当x=1时,y=3x=3,∴C(1,3),将A(﹣2,6),C(1,3)代入y=kx+b,得,解得,∴直线AB的解析式是y=﹣x+4;(2)y=﹣x+4中,令y=0,则x=4,∴B(4,0),设D(0,m)(m<0),S△BOC=×OB×|yC|==6,S△COD=×OD×|xC|=|m|×1=﹣m,∵S△COD=S△BOC,∴﹣m=,解得m=﹣4,∴D(0,﹣4).【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题时注意利用待定系数法解题.21、(1)作图见解析,,,;(2)14【分析】(1)分别找到A、B、C点关于y轴的对称点,顺次连接即可得到,再写出坐标即可;(2)用矩形面积减去三个直角三角形面积即可.【详解】(1)如图,,,(2)【点睛】本题考查网格作图,熟练掌握轴对称的定义是解题的关键.22、(1)详见解析;(2)不变,AE=CG,详见解析;(3)CM【分析】(1)如图①,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出结论;(2)如图②,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出结论;(3)如图③,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠BCE=∠CAM,由ASA就可以得出△BCE≌△CAM,就可以得出结论.【详解】(1)证明:∵AC=BC,∴∠ABC=∠CAB.∵∠ACB=90°,∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.∵BF⊥CE,∴∠BFC=90°,∴∠CBF+∠BCE=90°,∴∠ACE=∠CBF.∵CD⊥AB,∠ABC=∠A=45°,∴∠BCD=∠ACD=45°,∴∠A=∠BCD.在△BCG和△CAE中,∴△BCG≌△CAE(ASA),∴AE=CG.(2)解:不变,AE=CG理由如下:∵AC=BC,∴∠ABC=∠A.∵∠ACB=90°,∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.∵BF⊥CE,∴∠BFC=90°,∴∠CBF+∠BCE=90°,∴∠ACE=∠CBF.∵CD⊥AB,∠ABC=∠A=45°,∴∠BCD=∠ACD=45°,∴∠A=∠BCD.在△BCG和△CAE中,∴△BCG≌△CAE(ASA),∴AE=CG.(3)BE=CM,理由如下:∵AC=BC,∴∠ABC=∠CAB.∵∠ACB=90°,∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.∵AH⊥CE,∴∠AHC=90°,∴∠HAC+∠ACE=90°,∴∠BCE=∠HAC.∵在RT△ABC中,CD⊥AB,AC=BC,∴∠BCD=∠ACD=45°∴∠ACD=∠ABC.在△BCE和△CAM中,∴△BCE≌△CAM(ASA),∴BE=CM,故答案为:CM.【点评】本题考查了等腰直角三角形的性质的运用,等式的性质的运用,线段垂直平分线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.23、两种机器人需要10小时搬运完成【分析】先设两种机器人需要x小时搬运完成,然后根据工作效率=工作总量÷工作时间,结合A型机器人比B型机器每小时多搬运30kg,得出方程并且进行解方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年阿米妥投资申请报告
- 第21章 恶性肿瘤流行病学课件
- 2024年产权商铺租赁买卖一体协议
- 2024合作社商用物业租赁协议范本
- 2024年农药采购协议:高效环保
- 2024年度玻璃钢材质化粪池购销协议
- 2024年城市配送服务承包协议格式
- 2024年度生产技术合作协议样本
- 2024施工技术人员劳动协议样本
- Unit 4 Section A(1a-1d)(同步课件)-2024-2025学年初中英语七年级上册同步课件(人教版2024)
- 《中华商业文化》第四章
- 服务与服务意识培训课件
- 第5课《秋天的怀念》群文教学设计 统编版语文七年级上册
- 二年级家长会语文老师课件
- 冬季安全生产特点及预防措施
- 视频短片制作合同范本
- 结构加固改造之整体结构加固教学课件
- 高中数学-3.3 幂函数教学课件设计
- 抑郁症与睡眠障碍课件
- 创新思维与创业实验-东南大学中国大学mooc课后章节答案期末考试题库2023年
- 第九讲 全面依法治国PPT习概论2023优化版教学课件
评论
0/150
提交评论