2022-2023学年山东省淄博市博山区八年级数学第一学期期末调研模拟试题含解析_第1页
2022-2023学年山东省淄博市博山区八年级数学第一学期期末调研模拟试题含解析_第2页
2022-2023学年山东省淄博市博山区八年级数学第一学期期末调研模拟试题含解析_第3页
2022-2023学年山东省淄博市博山区八年级数学第一学期期末调研模拟试题含解析_第4页
2022-2023学年山东省淄博市博山区八年级数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知:如图,四边形中,,.在边上求作点,则的最小值为()A. B. C. D.2.下列命题中,真命题的个数是()①若,则;②的平方根是-5;③若,则;④所有实数都可以用数轴上的点表示.A.1个 B.2个 C.3个 D.4个3.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A. B. C. D.4.已知是方程2x-ay=5的一个解,则的值为()A. B.4 C.25 D.15.甲、乙两种盐水,若分别取甲种盐水240g,乙种盐水120g,混合后,制成的盐水浓度为8%;若分别取甲种盐水80g,乙种盐水160g,混合后,制成的盐水浓度为10%,求甲、乙两种盐水的浓度各是多少?如果设甲种盐水的浓度为x,乙种盐水浓度为y,根据题意,可列出下方程组是()A. B.C. D.6.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0) B.(1,2) C.(2,1) D.(1,1)7.在矩形ABCD内,将两张边长分别为a和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A.2a B.2b C. D.8.下列图形中,对称轴条数最多的图形是()A. B. C. D.9.如图,直线:交轴于,交轴于,轴上一点,为轴上一动点,把线段绕点逆时针旋转得到线段,连接,,则当长度最小时,线段的长为()A. B. C.5 D.10.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动。同时,点Q在线段CA上由C点向A点运动。若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2 B.5 C.1或5 D.2或3二、填空题(每小题3分,共24分)11.计算的结果是________.12.用科学记数法表示:0.000002018=_____.13.点P(1,﹣2)关于x轴对称的点的坐标为P′______.14.如图:等腰三角形的底边的长是,面积是,腰的垂直平分线交于点,若是边的中点,为线段上的动点,则的最小周长为________.15.如图,AB∥CD,AD与BC交于点E.若∠B=35°,∠D=45°,则∠AEC=.16.科学家测出某微生物长度为1.111145米,将1.111145用科学记数法表示为______.17.点(-2,1)点关于x轴对称的点坐标为___;关于y轴对称的点坐标为__.18.将长方形纸片沿折叠,得到如图所示的图形,若,则__________度.三、解答题(共66分)19.(10分)(1)计算:(2)观察下列等式:=1-;=-;=-;……,探究并解方程:+=.20.(6分)已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出的值.21.(6分)如图,,,于点D,于点E,BE与CD相交于点O.(1)求证:;(2)求证;是等腰三角形;(3)试猜想直线OA与线段BC又怎样的位置关系,并说明理由.22.(8分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,过点的直线交轴于,且面积为.(1)求点的坐标及直线的解析式.(2)如图1设点为线段中点,点为轴上一动点,连接,以为边向右侧作以为直角顶点的等腰,在点运动过程中,当点落在直线上时,求点的坐标.(3)如图2,若为线段上一点,且满足,点为直线上一动点,在轴上是否存在点,使以点,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.23.(8分)如图,在中,,若点从点出发,以每秒的速度沿折线运动,设运动时间为秒().(1)用尺规作线段的垂直平分线(不写作法,保留作图痕迹);(2)若点恰好运动到的垂直平分线上时,求的值.24.(8分)解分式方程:.25.(10分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.26.(10分)若一次函数的图象经过点.求的值,并在给定的直角坐标系中画出此函数的图象.观察此图象,直接写出当时,的取值范围.

参考答案一、选择题(每小题3分,共30分)1、B【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD最小;再作D'E⊥BC于E,则EB=D'A=AD,先根据等边对等角得出∠DCD'=∠DD'C,然后根据平行线的性质得出∠D'CE=∠DD'C,从而求得∠D'CE=∠DCD',得出∠D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E⊥BC于E,则EB=D'A=AD.∵CD=2AD,∴DD'=CD,∴∠DCD'=∠DD'C.∵∠DAB=∠ABC=90°,∴四边形ABED'是矩形,∴DD'∥EC,D'E=AB=3,∴∠D'CE=∠DD'C,∴∠D'CE=∠DCD'.∵∠DCB=10°,∴∠D'CE=30°,∴D'C=2D'E=2AB=2×3=1,∴PC+PD的最小值为1.故选:B.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,30°角的直角三角形的性质等,确定出P点是解答本题的关键.2、B【分析】根据各个选项中的说法可以判断是否为真命题,从而可以解答本题.【详解】①若,则,真命题;②的平方根是,假命题;③若,则,假命题;④所有实数都可以用数轴上的点表示,真命题.故答案为:B.【点睛】本题考查了真命题的定义以及判断,根据各个选项中的说法可以判断是否为真命题是解题的关键.3、B【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.4、D【分析】把x与y的值代入方程计算求出a的值,代入原式计算即可求出值.【详解】把代入方程得:4﹣a=5,解得:a=﹣1,则=1,故选:D.【点睛】此题考查了二元一次方程的解,方程的即为能使方程左右两边相等的未知数的值.5、A【分析】根据题意可知本题的等量关系有,240克的甲种盐水的含盐量+120克的乙种盐水的含盐量=浓度为8%的盐水的含盐量,80克的甲种盐水的含盐量+160克的乙种盐水的含盐量=浓度为10%的盐水的含盐量.根据以上条件可列出方程组.【详解】解:甲种盐水的浓度为x,乙种盐水的浓度为y,依题意有,故选:A.【点睛】考查了由实际问题抽象出二元一次方程组的知识,解题关键是要弄清题意,找出合适的等量关系,列出方程组,再求解.注意:盐水浓度=含盐量÷盐水重量=含盐量÷(含盐量+水的重量).6、D【解析】根据题意首先确定原点的位置,进而得出“宝藏”的位置.【详解】根据两个标志点A(3,1),B(2,2)可建立如下所示的坐标系:

由平面直角坐标系知,“宝藏”点C的位置是(1,1),

故选:D.【点睛】考查了坐标确定位置,正确得出原点位置是解题关键.7、B【解析】利用面积的和差分别表示出和,然后利用整式的混合运算计算它们的差.【详解】,,,,,,,故选B.【点睛】本题考查了正方形的性质,整式的混合运算,“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.8、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A选项图形有4条对称轴;B选项图形有5条对称轴;C选项图形有6条对称轴;D选项图形有无数条对称轴∴对称轴的条数最多的图形是D选项图形,故选:D.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴.9、B【分析】作EH⊥x轴于H,通过证明△DBO≌△BEH,可得HE=OB,从而确定点点的运动轨迹是直线,根据垂线段最短确定出点E的位置,然后根据勾股定理求解即可.【详解】解:作EH⊥x轴于H,∵∠DBE=90°,∴∠DBC+∠CBE=90°.∵∠BHE=90°,∴∠BEH+∠CBE=90°,∴∠DBC=∠BEH.在△DBO和△BEH中,∵∠DBC=∠BEH,∠BOD=∠BHE,BD=BE,∴△DBO≌△BEH中,∴HE=OB,当y=0时,,∴x=3,∴HE=OB=3,∴点的运动轨迹是直线,B(3,0),∴当⊥m时,CE最短,此时点的坐标为(-1,3),∵B(-1,0),B(3,0),∴BC=4,∴BE′=,∴BD=BE′=4,∴OD=,∴CD=.故选B.【点睛】本题考查一次函数与坐标轴的交点,坐标与图形的变化,旋转变换、全等三角形的判定与性质,垂线段最短以及勾股定理等知识,解题的关键是确定点E的位置.10、D【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.【详解】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=AB=6cm,∵BD=PC,∴BP=8-6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=1(m/s).故v的值为2或1.故选择:D.【点睛】此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.二、填空题(每小题3分,共24分)11、【分析】由题意根据运算顺序,先把各个分式进行乘方运算,再进行分式的乘除运算即可得出答案.【详解】解:故答案为:.【点睛】本题主要考查分式的乘除法,解题时注意分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.12、2.018×10﹣1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数字0.000002018用科学记数法表示为2.018×10﹣1,故答案是:2.018×10﹣1.【点睛】本题主要考查科学记数法,掌握科学记数法是解题的关键.13、(1,2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即横坐标不变,纵坐标变成相反数,即可得出答案.【详解】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,

∴点P(1,-2)关于x轴对称点的坐标为(1,2),

故答案为(1,2).【点睛】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即横坐标不变,纵坐标变成相反数,难度较小.14、1【分析】连接AM、AD,如图,根据等腰三角形的性质可得AD⊥BC,根据三角形的面积可求出AD的长,由线段垂直平分线的性质可得AM=BM,进而可推出BM+MD=AM+MD≥AD,于是AD的长为BM+MD的最小值,进一步即可求出结果.【详解】解:连接AM、AD,如图,∵△ABC是等腰三角形,是边的中点,∴AD⊥BC,∴,解得:AD=6,∵EF是的垂直平分线,∴AM=BM,∴BM+MD=AM+MD≥AD,∴AD的长为BM+MD的最小值,∴△的最小周长=AD+BD=6+=1.故答案为:1.【点睛】本题主要考查了等腰三角形的性质和线段垂直平分线的性质等知识,属于常考题型,熟练掌握上述知识、灵活应用对称的方法是解题的关键.15、80°.【解析】试题分析:∵AB∥CD,∠B=35°,∴∠C=35°,∵∠D=45°,∴∠AEC=∠C+∠D=35°+45°=80°,故答案为80°.考点:1.平行线的性质;2.三角形的外角性质.16、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】解:,故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的1的个数所决定.17、(-2,-1)、(2,1)【解析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变点(-2,1)关于x轴对称的点的坐标是(-2,-1),点(-2,1)关于y轴对称的点的坐标是(2,1),18、114【分析】由折叠的性质得出∠BFE=∠GFE=∠BFG,再由∠1得出∠BFE,然后即可得出∠AEF.【详解】由折叠,得∠BFE=∠GFE=∠BFG∵∴∠BFG=180°-∠1=180°-48°=132°∴∠BFE=132°÷2=66°∵∠A=∠B=90°∴∠AEF=360°-90°-90°-66°=114°故答案为:114.【点睛】此题主要考查根据矩形和折叠的性质求角度,熟练掌握,即可解题.三、解答题(共66分)19、(1);(2).【分析】(1)根据除法法则,先把除法统一成乘法,再约分;(3)方程左边利用拆项法变形,再按一般分式方程解答即可.【详解】(1)==;(2);,方程整理,得,方程两边同时乘以,得:,去括号,得,解得,检验:当时,,所以原分式方程的解为.【点睛】本题考查了分式的乘除混合运算以及解分式方程,解第(2)题的关键学会拆项变形.注意解分式方程要检验.20、(1)证明见解析;(2)结论:BD=2CF.理由见解析;(3).【分析】(1)欲证明BF=AD,只要证明△BCF≌△ACD即可;(2)结论:BD=2CF.如图2中,作EH⊥AC于H.只要证明△ACD≌△EHA,推出CD=AH,EH=AC=BC,由△EHF≌△BCF,推出CH=CF即可解决问题;(3)利用(2)中结论即可解决问题.【详解】(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BC=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.21、(1)见解析;(2)见解析;(3)猜想:OA⊥BC.理由见解析;【分析】(1)根据垂直的定义可得∠ADC=∠AEB=90°,然后利用AAS即可证出结论;(2)根据全等三角形的性质可得∠ABE=∠ACD,然后根据等边对等角可得∠ABC=∠ACB,从而证出∠EBC=∠DCB,然后根据等角对等边即可证出结论;(3)利用HL证出RtADO≌RtAEO,从而得出∠DAO=∠EAO,然后根据三线合一即可求出结论.【详解】(1)证明:∵CD⊥AB,BE⊥AC∴∠ADC=∠AEB=90°∵∠DAC=∠EAB,AB=AC∴(AAS);(2)证明:∵∴∠ABE=∠ACD∵AB=AC∴∠ABC=∠ACB∴∠EBC=∠DCB∴OBC是等腰三角形;(3)解:猜想:OA⊥BC.理由如下:∵ACD≌ABE∴AD=AE∵∠ADC=∠AEB=90°,OA=OA∴RtADO≌RtAEO(HL)∴∠DAO=∠EAO又∵AB=AC∴OA⊥BC.【点睛】此题考查的是全等三角形的判定及性质和等腰三角形的判定及性质,掌握全等三角形的判定及性质和等腰三角形的判定及性质是解决此题的关键.22、(1),直线的解析式为.(2)坐标为或.(3)存在,满足条件的点的坐标为或或.【分析】(1)利用三角形的面积公式求出点C坐标,再利用待定系数法即可解答;(2)分两种情况:①当时,如图,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,,求出点;②当时,如图,同法可得,再将解代入直线解析式求出n值即可解答;(3)利用三角形面积公式求出点M的坐标,求出直线AM的解析式,作BE∥OC交直线于,此时,当时,可得四边形,四边形是平行四边形,可得,,再根据对称性可得即可解答.【详解】(1)直线与轴交于点,与轴交于点,,,,,,,,,设直线的解析式为,则有,,直线的解析式为.(2),,,,设,①当时,如图,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,.是等腰直角三角形,易证,,,,点在直线,,,.②当时,如图,同法可得,点在直线上,,,.综上所述,满足条件的点坐标为或.(3)如图,设,,,,,,直线的解析式为,作交直线于,此时,当时,可得四边形,四边形是平行四边形,可得,,当点在第三象限,由BC=DE,根据对称性知,点D关于点A对称的点也符合条件,综上所述,满足条件的点的坐标为或或.【点睛】本题考查三角形的面积、待定系数法求直线解析式、全等三角形的判定与性质、平行四边形的判定与性质,是一次函数与几何图形的综合题,解答的关键是理解题意,认真分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论