考点12平行四边形-2022四川中考数学试题分类汇编(原卷版+解析)_第1页
考点12平行四边形-2022四川中考数学试题分类汇编(原卷版+解析)_第2页
考点12平行四边形-2022四川中考数学试题分类汇编(原卷版+解析)_第3页
考点12平行四边形-2022四川中考数学试题分类汇编(原卷版+解析)_第4页
考点12平行四边形-2022四川中考数学试题分类汇编(原卷版+解析)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点12:平行四边形1.(2023内江)如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为()A.2 B.4 C.6 D.82.(2023达州)如图,在中,点D,E分别是,边的中点,点F在的延长线上.添加一个条件,使得四边形为平行四边形,则这个条件可以是() B. C. D.3.(2023德阳)如图,在四边形中,点,,,分别是,,,边上的中点,则下列结论一定正确的是()A.四边形是矩形B.四边形的内角和小于四边形的内角和C.四边形的周长等于四边形的对角线长度之和D.四边形的面积等于四边形面积的4.(2023乐山)如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为E,过点B作BF⊥AC,垂足为F.若AB=6,AC=8,DE=4,则BF的长为()A.4 B.3 C. D.25.(2023宜宾)如图,在中,,是上的点,∥交于点,∥交于点,那么四边形的周长是()A.5 B.10 C.15 D.206.(2023泸州)如图,已知点E、F分别在▱ABCD的边AB、CD上,且AE=CF.求证:DE=BF.7.(2023内江)(8分)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.8.(2023凉山州)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:四边形ADBF是菱形;(2)若AB=8,菱形ADBF的面积为40,求AC的长.9.(2023绵阳)如图,平行四边形ABCD中,DB=,AB=4,AD=2,动点E,F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.(1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为秒时,设CE与DF交于点P,求线段EP与CP长度的比值;(2)如图2,设点E的速度为1个单位每秒,点F的速度为个单位每秒,运动时间为x秒,ΔAEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?(3)如图3,H在线段AB上且AH=HB,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使EM=HM.并说明理由.考点12:平行四边形1.(2023内江)如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为()A.2 B.4 C.6 D.8分析:由平行四边形的得CD=AB=12,BC=AD=8,AB∥CD,再证∠CBM=∠CMB,则MC=BC=8,即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=12,BC=AD=8,AB∥CD,∴∠ABM=∠CMB,∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∴∠CBM=∠CMB,∴MC=BC=8,∴DM=CD﹣MC=12﹣8=4,故选:B.【点评】本题考查了平行四边形的性质、等腰三角形的判定以及平行线的性质等知识,熟练掌握平行四边形的性质,证明MC=BC是解题的关键.2.(2023达州)如图,在中,点D,E分别是,边的中点,点F在的延长线上.添加一个条件,使得四边形为平行四边形,则这个条件可以是() B. C. D.答案:B解析:分析:利用三角形中位线定理得到DE∥AC且DE=AC,结合平行四边形的判定定理进行选择.【详解】解:∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE∥AC且DE=AC,A、根据∠B=∠F不能判定CF∥AD,即不能判定四边形ADFC为平行四边形,故本选项错误.B、根据DE=EF可以判定DF=AC,由“一组对边平行且相等的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C、根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选:B.【点睛】本题主要考查了三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.3.(2023德阳)如图,在四边形中,点,,,分别是,,,边上的中点,则下列结论一定正确的是()A.四边形是矩形B.四边形的内角和小于四边形的内角和C.四边形的周长等于四边形的对角线长度之和D.四边形的面积等于四边形面积的答案:C解析:分析:连接,根据三角形中位线的性质,,,继而逐项分析判断即可求解.【详解】解:连接,设交于点,点,,,分别是,,,边上的中点,,,A.四边形是平行四边形,故该选项不正确,不符合题意;B.四边形的内角和等于于四边形的内角和,都为360°,故该选项不正确,不符合题意;C.四边形的周长等于四边形的对角线长度之和,故该选项正确,符合题意;D.四边形的面积等于四边形面积的,故该选项不正确,不符合题意;故选C【点睛】本题考查了中点四边形的性质,三角形中位线的性质,掌握三角形中位线的性质是解题的关键.4.(2023乐山)如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为E,过点B作BF⊥AC,垂足为F.若AB=6,AC=8,DE=4,则BF的长为()A.4 B.3 C. D.2答案:B解析:分析:利用平行四边形ABCD的面积公式即可求解.【详解】解:∵DE⊥AB,BF⊥AC,∴S平行四边形ABCD=DE×AB=2××AC×BF,∴4×6=2××8×BF,∴BF=3,故选:B.【点睛】本题考查了平行四边形的性质,利用平行四边形ABCD的面积公式求垂线段的长是解题的关键.5.(2023宜宾)如图,在中,,是上的点,∥交于点,∥交于点,那么四边形的周长是()A.5 B.10 C.15 D.20答案:B解析:分析:由于DE∥AB,DF∥AC,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明□AFDE的周长等于AB+AC.【详解】∵DE∥AB,DF∥AC,则四边形AFDE是平行四边形,∠B=∠EDC,∠FDB=∠C∵AB=AC,∴∠B=∠C,∴∠B=∠FDB,∠C=∠EDF,∴BF=FD,DE=EC,所以□AFDE的周长等于AB+AC=10.故答案为B【点睛】本题考查了平行四边形的性质、等腰三角形的性质、平行四边形的判定,熟练掌握这些知识点是本题解题的关键.6.(2023泸州)如图,已知点E、F分别在▱ABCD的边AB、CD上,且AE=CF.求证:DE=BF.答案:证明详见解析.解析:分析:由“平行四边形ABCD的对边平行且相等”的性质推知AB=CD,AB∥CD.然后根据图形中相关线段间的和差关系求得BE=FD,易证四边形EBFD是平行四边形,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF.∴BE=FD,BE∥FD,∴四边形EBFD是平行四边形,∴DE=BF.考点:平行四边形的性质;全等三角形的判定与性质.7.(2023内江)(8分)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.分析:(1)根据平行四边形的性质得到AB=CD,AB∥CD,根据平行线的性质得到∠ABD=∠CDB,利用SAS定理证明△ABE≌△CDF;(2)根据全等三角形的性质得到AE=CF,∠AEB=∠CFD,根据平行线的判定定理证明AE∥CF,再根据平行四边形的判定定理证明结论.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,∴AE∥CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.【点评】本题考查的是平行四边形的判定和性质、全等三角形的判定和性质,掌握平行四边形的对边平行且相等、平行且相等的四边形是平行四边形是解题的关键.8.(2023凉山州)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:四边形ADBF是菱形;(2)若AB=8,菱形ADBF的面积为40,求AC的长.答案:(1)见解析(2)10解析:分析:(1)证△AEF≌△DEC(AAS),得△AEF≌△DEC(AAS),再证四边形ADBF是平行四边形,然后由直角三角形斜边中线等于斜边的一半得证AD=BD=BC,即可由菱形判定定理得出结论;(2)连接DF交AB于O,由菱形面积公式S菱形ADBF==40,求得OD长,再由菱形性质得OA=OB,证得OD是三角形的中位线,由中位线性质求解可.【小问1详解】证明:∵E是AD的中点,∴AE=DE∵AFBC,∴∠AFE=∠DCE,在△AEF和△DEB中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵D是BC的中点,∴CD=BD,∴AF=BD,∴四边形ADBF是平行四边形,∵∠BAC=90°,∵D是BC中点,∴AD=BD=BC,∴四边形ADBF是菱形;【小问2详解】解:连接DF交AB于O,如图由(1)知:四边形ADBF是菱形,∴AB⊥DF,OA=AB=×8=4,S菱形ADBF==40,∴=40,∴DF=10,∴OD=5,∵四边形ADBF是菱形,∴O是AB的中点,∵D是BC的中点,∴OD是△BAC的中位线,∴AC=2OD=2×5=10.答:AC的长为10.【点睛】本题考查平行四边形的判定,菱形的判定与性质,三角形全等的判定与性质,直角三角形斜边中线的性质,三角形中位线的性质,熟练掌握菱形的判定与性质是解题的关键.9.(2023绵阳)如图,平行四边形ABCD中,DB=,AB=4,AD=2,动点E,F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.(1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为秒时,设CE与DF交于点P,求线段EP与CP长度的比值;(2)如图2,设点E的速度为1个单位每秒,点F的速度为个单位每秒,运动时间为x秒,ΔAEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?(3)如图3,H在线段AB上且AH=HB,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使EM=HM.并说明理由.答案:(1);(2)y关于x的函数解析式为;当时,y的最大值为;(3)当EF∥BD时,能使EM=HM.理由见解析解析:分析:(1)延长DF交CB的延长线于点G,先证得,可得,根据题意可得AF=,AE=,可得到CG=3,再证明△PDE∽△PGC,即可求解;(2)分三种情况讨论:当0≤x≤2时,E点在AD上,F点在AB上;当时,E点在BD上,F点在AB上;当时,点E、F均在BD上,即可求解;(3)当EF∥BD时,能使EM=HM.理由:连接DH,根据直角三角形的性质,即可求解.【小问1详解】解:如图,延长DF交CB的延长线于点G,∵四边形ABCD是平行四边形,∴,∴,∴,∵点E的速度为1个单位每秒,点F的速度为4个单位每秒,运动时间为秒,∴AF=,AE=,∵AB=4,AD=2,∴BF=,ED=,∴,∴BG=1,∴CG=3,∵,∴△PDE∽△PGC,∴,∴;【小问2详解】解:根据题意得:当0≤x≤2时,E点在AD上,F点在AB上,此时AE=x,,∵,AB=4,AD=2,∴,∴△ABD是直角三角形,∵,∴∠ABD=30°,∴∠A=60°,如图,过点E作交于H,∴,∴;∴当x>0时,y随x的增大而增大,此时当x=2时,y有最大值3;当时,E点在BD上,F点在AB上,如图,过点E作交于N,过点D作交于M,则EN∥DM,根据题意得:DE=x-2,∴,在Rt△ABD中,,AM=1,∵EN∥DM,∴△BEN∽△BDM,∴,∴∴,∴,此时该函数图象的对称轴为直线,∴当时,y随x的增大而减小,此时当x=2时,y有最大值3;当时,点E、F均在BD上,过点E作交于Q,过点F作交于P,过点D作DM⊥AB于点M,∴,DA+DE=x,∵AB=4,AD=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论