湖南长沙青竹湖湘一外国语学校2022年数学九上期末调研试题含解析_第1页
湖南长沙青竹湖湘一外国语学校2022年数学九上期末调研试题含解析_第2页
湖南长沙青竹湖湘一外国语学校2022年数学九上期末调研试题含解析_第3页
湖南长沙青竹湖湘一外国语学校2022年数学九上期末调研试题含解析_第4页
湖南长沙青竹湖湘一外国语学校2022年数学九上期末调研试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.函数与函数在同一坐标系中的大致图象是()A. B. C. D.2.下列事件中,是必然事件的是()A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B.抛掷一枚普通正方体骰子,所得点数小于7C.抛掷一枚一元硬币,正面朝上D.从一副没有大小王的扑克牌中抽出一张,恰好是方块3.△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A. B. C. D.4.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点 B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点 D.△ABC三条高所在直线的交点.5.某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为()A.7 B.8 C.9 D.106.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为7.下列方程中是关于x的一元二次方程的是()A.x2+=0 B.y2﹣3x+2=0C.x2=5x D.x2﹣4=(x+1)28.已知实数m,n满足条件m2﹣7m+2=0,n2﹣7n+2=0,则+的值是()A. B. C.或2 D.或29.如图,水平地面上有一面积为30cm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面.将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是()A.cm B.cm C.cm D.30cm10.如图,将一副三角板如图放置,如果,那么点到的距离为()A. B. C. D.11.下列事件中,是必然事件的是()A.抛掷一枚硬币正面向上 B.从一副完整扑克牌中任抽一张,恰好抽到红桃C.今天太阳从西边升起 D.从4件红衣服和2件黑衣服中任抽3件有红衣服12.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()A.开口向下B.当x=-1,时,y有最大值是2C.对称轴是x=-1D.顶点坐标是(1,2)二、填空题(每题4分,共24分)13.两个相似三角形的面积比为4:9,那么它们对应中线的比为______.14.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=.15.已知x-2y=3,试求9-4x+8y=_______16.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,,那么BD=_____.17.比较大小:________.(填“,或”)18.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.三、解答题(共78分)19.(8分)如图,抛物线y=a(x+2)(x﹣4)与x轴交于A,B两点,与y轴交于点C,且∠ACO=∠CBO.(1)求线段OC的长度;(2)若点D在第四象限的抛物线上,连接BD、CD,求△BCD的面积的最大值;(3)若点P在平面内,当以点A、C、B、P为顶点的四边形是平行四边形时,直接写出点P的坐标.20.(8分)定义:在平面直角坐标系中,对于任意两点,,若点满足,,那么称点是点,的融合点.例如:,,当点满是,时,则点是点,的融合点,(1)已知点,,,请说明其中一个点是另外两个点的融合点.(2)如图,点,点是直线上任意一点,点是点,的融合点.①试确定与的关系式.②若直线交轴于点,当为直角三角形时,求点的坐标.21.(8分)富平因取“富庶太平”之意而得名,是华夏文明重要发祥地之一.某班举行关于“美丽的富平”的演讲活动.小明和小丽都想第一个演讲,于是他们通过做游戏来决定谁第一个来演.讲游戏规则是:在一个不透明的袋子中有一个黑球a和两个白球b、c,(除颜色外其它均相同),小丽从袋子中摸出一个球,放回后搅匀,小明再从袋子中摸出一个球,若两次摸到的球颜色相同,则小丽获胜,否则小明获胜,请你用树状图或列表的方法分别求出小丽与小明获胜的概率,并说明这个游戏规则对双方公平吗?22.(10分)如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.23.(10分)如图,在平面直角坐标系中,已知的三个项点的坐标分别是、、.(1)在轴左侧画,使其与关于点位似,点、、分别于、、对应,且相似比为;(2)的面积为_______.24.(10分)已知是关于的一元二次方程的两个实数根.(1)求的取值范围;(2)若,求的值;25.(12分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.26.某商场为了方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式扶梯AB长为10m,坡角∠ABD=30°;改造后斜坡式自动扶梯的坡角∠ACB=9°,请计算改造后的斜坡AC的长度,(结果精确到0.01(sin9°≈0.156,cos9°≈0.988,tan9°≈0.158)

参考答案一、选择题(每题4分,共48分)1、B【分析】根据函数与函数分别确定图象即可得出答案.【详解】∵,-2<0,∴图象经过二、四象限,∵函数中系数小于0,∴图象在一、三象限.故选:B.【点睛】此题主要考查了从图象上把握有用的条件,准确确定图象位置,正确记忆一次函数与反比例函数的区别是解决问题的关键.2、B【解析】根据事件发生的可能性大小即可判断.【详解】A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球的概率为0,故错误;B.抛掷一枚普通正方体骰子,所得点数小于7的概率为1,故为必然事件,正确;C.抛掷一枚一元硬币,正面朝上的概率为50%,为随机事件,故错误;D.从一副没有大小王的扑克牌中抽出一张,恰好是方块,为随机事件,故错误;故选B.【点睛】此题主要考查事件发生的可能性,解题的关键是熟知概率的定义.3、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的长;过C作CM⊥AB,交AB于点M,由垂径定理可得M为AE的中点,在Rt△ACM中,根据勾股定理得AM的长,从而得到AE的长.【详解】解:在Rt△ABC中,

∵AC=3,BC=4,

∴AB==1.

过C作CM⊥AB,交AB于点M,如图所示,

由垂径定理可得M为AE的中点,

∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=1,

∴CM=,

在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,

解得:AM=,

∴AE=2AM=.

故选:C.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4、C【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,

∴凉亭选择△ABC三条角平分线的交点.

故选:C.【点睛】本题主要考查的是角平分线的性质在实际生活中的应用.主要利用了利用了角平分线上的点到角两边的距离相等.5、A【分析】分别设出枝干和小分支的数目,列出方程,解方程即可得出答案.【详解】设枝干有x根,则小分支有根根据题意可得:解得:x=7或x=-8(不合题意,舍去)故答案选择A.【点睛】本题考查的是一元二次方程的应用,解题关键是根据题目意思列出方程.6、D【解析】A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为,故选D.7、C【解析】依据一元二次方程的定义解答即可.【详解】A.x20是分式方程,故错误;B.y2﹣3x+2=0是二元二次方程,故错误;C.x2=5x是一元二次方程,故正确;D.x2﹣4=(x+1)2是一元一次方程,故错误.故选:C.【点睛】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解答本题的关键.8、D【分析】①m≠n时,由题意可得m、n为方程x2﹣7x+2=0的两个实数根,利用韦达定理得出m+n、mn的值,将要求的式子转化为关于m+n、mn的形式,整体代入求值即可;②m=n,直接代入所求式子计算即可.【详解】①m≠n时,由题意得:m、n为方程x2﹣7x+2=0的两个实数根,∴m+n=7,mn=2,+====;②m=n时,+=2.故选D.【点睛】本题主要考查一元二次方程根与系数的关系,分析出m、n是方程的两个根以及分类讨论是解题的关键.9、A【解析】如下图,在灰色扇形OAB向右无滑动滚动过程中,点O移动的距离等于线段A1B1的长度,而A1B1的长度等于灰色扇形OAB中弧的长度,∵S扇形=,OA=6,∴(cm),即点O移动的距离等于:cm.故选A.点睛:在扇形沿直线无滑动滚动的过程中,由于圆心到圆上各点的距离都等于半径,所以此时圆心作的是平移运动,其平移的距离就等于扇形沿直线滚动的路程.10、B【分析】作EF⊥BC于F,设EF=x,根据三角函数分别表示出BF,CF,根据BD∥EF得到△BCD∽△FCE,得到,代入即可求出x.【详解】如图,作EF⊥BC于F,设EF=x,又∠ABC=45°,∠DCB=30°,则BF=EF÷tan45°=x,FC=EF÷tan30°=x∵BD∥EF∴△BCD∽△FCE,∴,即解得x=,x=0舍去故EF=,选B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定及解直角三角形的应用.11、D【分析】必然事件是指在一定条件下一定会发生的事件,根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、抛掷一枚硬币正面向上,是随机事件,故本选项错误;

B、从一副完整扑克牌中任抽一张,恰好抽到红桃,是随机事件.故本选项错误;

C、今天太阳从西边升起,是不可能事件,故本选项错误;

D、从4件红衣服和2件黑衣服中任抽3件有红衣服,是必然事件,故本选项正确.

故选:D.【点睛】本题考查了事件发生的可能性,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、D【解析】根据二次函数的性质对各选项进行判断.【详解】A、由二次函数的解析式y=(x+1)2+2,可知系数>1,故函数图像开口向上.故A项错误;B、将x=﹣1代入解析式,得到y=6,故B项错误;C、由二次函数的顶点式y=(x+1)2+2可知对称轴为x=1,故C项错误;D、函数的顶点式y=(x+1)2+2可知该函数的顶点坐标是(1,2),故D项正确.故选D.【点睛】本题主要考查二次函数的图像与性质,理解二次函数的顶点式是解答此题的关键.二、填空题(每题4分,共24分)13、2:1.【分析】根据相似三角形的面积的比等于相似比的平方进行计算即可;【详解】解:∵两个相似三角形的面积比为4:9,∴它们对应中线的比.故答案为:2:1.【点睛】本题主要考查了相似三角形的性质,掌握相似三角形的性质是解题的关键.14、105°.【分析】连接OQ,由旋转的性质可知:△AQC≌△BOC,从而推出∠OAQ=90°,∠OCQ=90°,再根据特殊直角三角形边的关系,分别求出∠AQO与∠OQC的值,可求出结果.【详解】连接OQ,∵AC=BC,∠ACB=90°,∴∠BAC=∠B=45°,由旋转的性质可知:△AQC≌△BOC,∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,∴∠OQC=45°,∵BO:OA=1:,设BO=1,OA=,∴AQ=1,则tan∠AQO==,∴∠AQO=60°,∴∠AQC=105°.故答案为105°.15、-3【分析】将代数式变形为9-4(x-2y),再代入已知值可得.【详解】因为x-2y=3,所以9-4x+8y=9-4(x-2y)=9-4×3=-3故答案为:-3【点睛】考核知识点:求整式的值.利用整体代入法是解题的关键.16、【解析】:∵在RT△ABC中,∠C=90°,BC=8,tanA=,∴AC=,∴AB=,∵边AB的垂直平分线交边AB于点E,∴BE=,∵在RT△BDE中,∠BED=90°,∴cosB=,∴BD=,故答案为.点睛:本题考查了解直角三角形,线段平分线的性质,掌握直角三角形中边角之间的关系是解答本题的关键.17、<【分析】比较与的值即可.【详解】∵,,,∴,故答案为:.【点睛】此题考查三角函数值,熟记特殊角度的三角函数值是解题的关键.18、3或1.2【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,BC=8,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题(共78分)19、(1)2;(2)2;(3)(2,2),(6,﹣2)或(﹣6,﹣2)【分析】(1)由抛物线的解析式先求出点A,B的坐标,再证△AOC∽△COB,利用相似三角形的性质可求出CO的长;(2)先求出抛物线的解析式,再设出点D的坐标(m,m2﹣m﹣2),用含m的代数式表示出△BCD的面积,利用函数的性质求出其最大值;(3)分类讨论,分三种情况由平移规律可轻松求出点P的三个坐标.【详解】(1)在抛物线y=a(x+2)(x﹣4)中,当y=0时,x1=﹣2,x2=4,∴A(﹣2,0),B(4,0),∴AO=2,BO=4,∵∠ACO=∠CBO,∠AOC=∠COB=90°,∴△AOC∽△COB,∴,即,∴CO=2;(2)由(1)知,CO=2,∴C(0,﹣2)将C(0,﹣2)代入y=a(x+2)(x﹣4),得,a=,∴抛物线解析式为:y=x2﹣x﹣2,如图1,连接OD,设D(m,m2﹣m﹣2),则S△BCD=S△OCD+S△OBD﹣S△BOC=×2m+×4(﹣m2+m+2)﹣×4×2=﹣m2+2m=﹣(m﹣2)2+2,根据二次函数的图象及性质可知,当m=2时,△BCD的面积有最大值2;(3)如图2﹣1,当四边形ACBP为平行四边形时,由平移规律可知,点C向右平移4个单位长度,再向上平移2个单位长度得到点B,所以点A向右平移4个单位长度,再向上平移2个单位长度得到点P,因为A(﹣2,0),所以P1(2,2);同理,在图2﹣2,图2﹣3中,可由平移规律可得P2(6,﹣2),P3(﹣6,﹣2);综上所述,当以点A、C、B、P为顶点的四边形是平行四边形时,点P的坐标为(2,2),(6,﹣2),P3(﹣6,﹣2).【点睛】本题考查了相似三角形的判定与性质,待定系数法求二次函数的解析式,三角形的面积及平移规律等,解题关键是熟知平行四边形的性质及熟练运用平移规律.20、(1)点是点,的融合点;(2)①,②符合题意的点为,.【解析】(1)由题中融合点的定义即可求得答案.(2)①由题中融合点的定义可得,.②结合题意分三种情况讨论:(ⅰ)时,画出图形,由融合点的定义求得点坐标;(ⅱ)时,画出图形,由融合点的定义求得点坐标;(ⅲ)时,由题意知此种情况不存在.【详解】(1)解:,∴点是点,的融合点(2)解:①由融合点定义知,得.又∵,得∴,化简得.②要使为直角三角形,可分三种情况讨论:(i)当时,如图1所示,设,则点为.由点是点,的融合点,可得或,解得,∴点.(ii)当时,如图2所示,则点为.由点是点,的融合点,可得点.(iii)当时,该情况不存在.综上所述,符合题意的点为,【点睛】本题是一次函数综合运用题,涉及到勾股定理得运用,此类新定义题目,通常按照题设顺序,逐次求解.21、小丽为,小军为,这个游戏不公平,见解析【分析】画出树状图,得出总情况数及两次模到的球颜色相同和不同的情况数,即可得小丽与小明获胜的概率,根据概率即可得游戏是否公平.【详解】根据题意两图如下:共有种等情况数,其中两次模到的球颜色相同的情况数有种,不同的有种,小丽获胜的概率是小军获胜的概率是,所以这个游戏不公平.【点睛】本题考查游戏公平性的判断,判断游戏的公平性要计算每个参与者获胜的概率,概率相等则游戏公平,否则游戏不公平,用到的知识点为:概率=所求情况数与总情况数之比.22、(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE的面积,运用二次函数分析最值即可;(3)设出点P坐标,分PA=PE,PA=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函数的解析式为:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴当m=时,△ADE的面积取得最大值为.(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求PA=,PE=,AE=,分三种情况讨论:当PA=PE时,=,解得:n=1,此时P(﹣1,1);当PA=AE时,=,解得:n=,此时点P坐标为(﹣1,);当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.23、(1)见解析;(2)1.【分析】(1)根据位似

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论