2025届广东省揭阳普宁市九上数学期末预测试题含解析_第1页
2025届广东省揭阳普宁市九上数学期末预测试题含解析_第2页
2025届广东省揭阳普宁市九上数学期末预测试题含解析_第3页
2025届广东省揭阳普宁市九上数学期末预测试题含解析_第4页
2025届广东省揭阳普宁市九上数学期末预测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省揭阳普宁市九上数学期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c在同一坐标系内的图象大致是()A. B. C. D.2.已知△ABC∽△A'B'C,AB=8,A'B'=6,则△ABC与△A'B'C的周长之比为()A. B. C. D.3.小明将如图两水平线l1、l2的其中一条当成x轴,且向右为正方向;两条直线l3、l4的其中一条当成y轴,且向上为正方向,并在此坐标平面中画出二次函数y=ax2﹣2a2x+1的图象,则()A.l1为x轴,l3为y轴 B.l2为x轴,l3为y轴C.l1为x轴,l4为y轴 D.l2为x轴,l4为y轴4.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是A.相切 B.相交 C.相离 D.不能确定5.如图,在平面直角坐标系中,菱形的边在轴的正半轴上,反比例函数的图象经过对角线的中点和顶点.若菱形的面积为12,则的值为().A.6 B.5 C.4 D.36.如图,在中,DE∥BC,,,,()A.8 B.9 C.10 D.127.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①b2﹣4ac<0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④当y>0时,x的取值范围是﹣1<x<3;⑤当x>0时,y随x增大而减小.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个8.一元二次方程的一次项系数和常数项依次是()A.-1和1 B.1和1 C.2和1 D.0和19.一个圆锥的底面直径是8cm,母线长为9cm,则圆锥的全面积为()A.36πcm2 B.52πcm2 C.72πcm2 D.136πcm210.下列各式正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠C=90°,∠ADC=60°,∠B=30°,若CD=3cm,则BD=_____cm.12.若关于的分式方程有增根,则的值为__________.13.如图,,分别是边,上的点,,若,,,则______.14.如图,矩形纸片中,,,将纸片沿折叠,使点落在边上的处,折痕分别交边、于点、,且.再将纸片沿折叠,使点落在线段上的处,折痕交边于点.连接,则的长是______.15.如图,把小圆形场地的半径增加5米得到大圆形场地,场地面积扩大了一倍.则小圆形场地的半径是______米.16.如图,在平面直角坐标系中有两点和,以原点为位似中心,相似比为,把线段缩短为线段,其中点与点对应,点与点对应,且在y轴右侧,则点的坐标为________.17.的半径是,弦,点为上的一点(不与点、重合),则的度数为______________.18.如图,AD与BC相交于点O,如果,那么当的值是_____时,AB∥CD.三、解答题(共66分)19.(10分)如图,一次函数的图象与反比例函数的图象交于,B

两点.(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围.20.(6分)已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,请直接写出AE的长.21.(6分)如图,一次函数y=kx+b与反比例函数y=mx的图象交于A(1,4),B(4,(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,kx+b<(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.22.(8分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C;D();②⊙D的半径=(结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为;(结果保留π)④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.23.(8分)先化简,再求值:()÷,其中a是一元二次方程对a2+3a﹣2=0的根.24.(8分)如图,在平面直角坐标系中,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点A、B、C的坐标分别为(1,﹣4)、(5,﹣4)、(4,﹣1).(1)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1的坐标;(2)将△A1B1C1绕顶点A1逆时针旋转90°后得到对应的△A1B2C2,画出△A1B2C2,并求出线段A1C1扫过的面积.25.(10分)解方程:(1)x2+2x﹣3=0;(2)x(x+1)=2(x+1).26.(10分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根.③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.

参考答案一、选择题(每小题3分,共30分)1、C【解析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知:开口向上,a>1;对称轴大于1,>1,b<1;二次函数图象与y轴交点在y轴的正半轴,c>1.∵反比例函数中k=﹣a<1,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<1,﹣c<1,∴一次函数图象经过第二、三、四象限.故选C.【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.2、C【分析】直接利用相似三角形的性质周长比等于相似比,进而得出答案.【详解】解:∵△ABC∽△A'B'C,AB=8,A'B'=6,∴△ABC与△A'B'C的周长之比为:8:6=4:1.故选:C.【点睛】本题主要考查了相似三角形的性质,正确得出相似比是解题关键.3、D【分析】根据抛物线的开口向下,可得a<0,求出对称轴为:直线x=a,则可确定l4为y轴,再根据图象与y轴交点,可得出l2为x轴,即可得出答案.【详解】解:∵抛物线的开口向下,∴a<0,∵y=ax2﹣2a2x+1,∴对称轴为:直线x=a<0,令x=0,则y=1,∴抛物线与y轴的正半轴相交,∴l2为x轴,l4为y轴.故选:D.【点睛】本题考查了二次函数的性质,开口方向由a确定,与y轴的交点由c确定,左同右异确定b的符号.4、B【分析】根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】∵⊙O的半径为8,圆心O到直线L的距离为4,

∵8>4,即:d<r,

∴直线L与⊙O的位置关系是相交.

故选B.5、C【解析】首先设出A、C点的坐标,再根据菱形的性质可得D点坐标,再根据D点在反比例函数上,再结合面积等于12,解方程即可.【详解】解:设点的坐标为,点的坐标为,则,点的坐标为,∴,解得,,故选:C.【点睛】本题主要考查反比例函数和菱形的性质,关键在于菱形的对角线相互平分且垂直.6、D【分析】先由DE∥BC得出,再将已知数值代入即可求出AC.【详解】∵DE∥BC,∴,∵AD=5,BD=10,∴AB=5+10=15,∵AE=4,∴,∴AC=12.故选:D.【点睛】本题考查平行线分线段成比例,熟练掌握平行线分线段成比例定理是解题的关键.7、B【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【详解】函数图象与x轴有2个交点,则b2﹣4ac>0,故①错误;函数的对称轴是x=1,则与x轴的另一个交点是(3,0),则方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,故②正确;函数的对称轴是x=﹣=1,则2a+b=0成立,故③正确;函数与x轴的交点是(﹣1,0)和(3,0)则当y>0时,x的取值范围是﹣1<x<3,故④正确;当x>1时,y随x的增大而减小,则⑤错误.故选:B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.8、A【分析】找出2x2-x+1的一次项-x、和常数项+1,再确定一次项的系数即可.【详解】2x2-x+1的一次项是-x,系数是-1,常数项是1.故选A.【点睛】本题考查一元二次方程的一般形式.9、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算出圆锥的侧面积,然后计算侧面积与底面积的和.【详解】解:圆锥的全面积=π×42+×2π×4×9=52π(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10、B【分析】根据二次根式的性质,同类二次根式的定义,以及二次根式的除法,分别进行判断,即可得到答案.【详解】解:A、无法计算,故A错误;B、,故B正确;C、,故C错误;D、,故D错误;故选:B.【点睛】本题考查了二次根式的性质,同类二次根式的定义,解题的关键是熟练掌握二次根式的性质进行解题.二、填空题(每小题3分,共24分)11、1【分析】根据30°直角三角形的比例关系求出AD,再根据外角定理证明∠DAB=∠B,即可得出BD=AD.【详解】∵∠B=30°,∠ADC=10°,∴∠BAD=∠ADC﹣∠B=30°,∴AD=BD,∵∠C=90°,∴∠CAD=30°,∴BD=AC=2CD=1cm,故答案为:1.【点睛】本题考查30°直角三角形的性质、外交定理,关键在于熟练掌握基础知识并灵活运用.12、3【分析】将分式方程去分母转化为整式方程,并求出x的值,然后再令x+2=0,即可求得m的值.【详解】解:由得:x=4-2m令x+2=0,得4-2m+2=0,解得m=3故答案为3.【点睛】本题考查了分式方程的增根,解分式方程和把增根代入整式方程求得相关字母的值是解答本题的关键.13、1【分析】证明△ADE∽△ACB,根据相似三角形的性质列出比例式,计算即可.【详解】解:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴,即,解得,AE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.14、【分析】过点E作EG⊥BC于G,根据矩形的性质可得:EG=AB=8cm,∠A=90°,,然后根据折叠的性质可得:cm,,,,根据勾股定理和锐角三角函数即可求出cos∠,再根据同角的余角相等可得,再根据锐角三角函数即可求出,从而求出,最后根据勾股定理即可求出.【详解】过点E作EG⊥BC于G∵矩形纸片中,,,∴EG=AB=8cm,∠A=90°,根据折叠的性质cm,,,∴BF=AB-AF=3cm根据勾股定理可得:cm∴cos∠∵,∴∴解得:cm∴AE=10cm,∴ED=AD-AE=2cm∴∴根据勾股定理可得:故答案为:.【点睛】此题考查的是矩形的性质、折叠的性质、勾股定理和锐角三角函数,掌握矩形的性质、折叠的性质、用勾股定理和锐角三角函数解直角三角形是解决此题的关键.15、【分析】根据等量关系“大圆的面积=2×小圆的面积”可以列出方程.【详解】设小圆的半径为xm,则大圆的半径为(x+5)m,根据题意得:π(x+5)2=2πx2,解得,x=5+5或x=5-5(不合题意,舍去).故答案为5+5.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.16、【分析】根据位似变换的性质计算即可.【详解】∵以原点O为位似中心,相似比为,把线段AB缩短为线段CD,B(6,3),∴点D的坐标为:,即,故答案为:.【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.17、或;【分析】证出△ABO是等边三角形得出∠AOB=60°.再分两种情况:点C在优弧上,则∠BCA=30°;点C在劣弧上,则∠BCA=(360°−∠AOB)=150°;即可得出结果.【详解】如图,连接OA,OB.∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA=(360°−∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.故答案为30°或150°.【点睛】此题考查了垂径定理、等边三角形的判定与性质、三角函数、弧长公式.熟练掌握垂径定理,证明△OAB是等边三角形是解决问题的关键.18、【分析】如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,据此可得结论.【详解】,当时,,.故答案为.【点睛】本题主要考查了平行线分线段成比例定理,解题时注意:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.三、解答题(共66分)19、(1);;(2)或;【解析】(1)利用点A的坐标可求出反比例函数解析式,再把B(4,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数时自变量x的取值范围.【详解】(1)

过点,,反比例函数的解析式为;点在

上,,

,一次函数过点,

,解得:.一次函数解析式为;(2)由图可知,当或时,一次函数值大于反比例函数值.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.20、(1)证明见解析;(2)y=x2-x+1=(x-)2+;(3)AE的长为2-或.【分析】(1)根据等腰直角三角形的性质及三角形内角与外角的关系,易证△ABD∽△DCE.

(2)由△ABD∽△DCE,对应边成比例及等腰直角三角形的性质可求出y与x的函数关系式;

(3)当△ADE是等腰三角形时,因为三角形的腰和底不明确,所以应分AD=DE,AE=DE,AD=AE三种情况讨论求出满足题意的AE的长即可.【详解】(1)证明:

∵∠BAC=90°,AB=AC

∴∠B=∠C=∠ADE=45°

∵∠ADC=∠B+∠BAD=∠ADE+∠CDE

∴∠BAD=∠CDE

∴△ABD∽△DCE;

(2)由(1)得△ABD∽△DCE,

∴=,

∵∠BAC=90°,AB=AC=1,

∴BC=,CD=-x,EC=1-y,

∴=,

∴y=x2-x+1=(x-)2+;

(3)当AD=DE时,△ABD≌△CDE,

∴BD=CE,

∴x=1-y,即x-x2=x,

∵x≠0,

∴等式左右两边同时除以x得:x=-1

∴AE=1-x=2-,

当AE=DE时,DE⊥AC,此时D是BC中点,E也是AC的中点,

所以,AE=;

当AD=AE时,∠DAE=90°,D与B重合,不合题意;

综上,在AC上存在点E,使△ADE是等腰三角形,

AE的长为2-或.【点睛】本题考查相似三角形的性质、等腰直角三角形的性质、等腰三角形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.21、(1)y=4x,y=﹣x+5;(2)0<x<1或x>4;(3)P的坐标为(175【解析】(1)把A(1,4)代入y=mx,求出m=4,把B(4,n)代入y=4x,求出n=1,然后把把A(1,4)、(4,1)代入y=(2)根据图像解答即可;(3)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,然后用待定系数法求出直线AB′的解析式即可.【详解】解:(1)把A(1,4)代入y=mx,得:m=4∴反比例函数的解析式为y=4x把B(4,n)代入y=4x,得:n=1∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:k+b=44k+b=1解得:k=-1∴一次函数的解析式为y=﹣x+5;(2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y=4x∴当x>0时,kx+b<mx的解集为0<x<1或x>4(3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),设直线AB′的解析式为y=px+q,∴p+q=44p+q=-1解得p=-5∴直线AB′的解析式为y=-5令y=0,得-5解得x=175∴点P的坐标为(175,0【点睛】本题考查了待定系数法求反比例函数及一次函数解析式,利用图像解不等式,轴对称最短等知识.熟练掌握待定系数法是解(1)的关键,正确识图是解(2)的关键,根据轴对称的性质确定出点P的位置是解答(3)的关键.22、(1)①答案见解析;②答案见解析;(2)①C(6,2);D(2,0);②;③;④相切,理由见解析.【分析】(1)①按题目的要求作图即可②根据圆心到A、B、C距离相等即可得出D点位置;(2)①C(6,2),弦AB,BC的垂直平分线的交点得出D(2,0);

②OA,OD长已知,△OAD中勾股定理求出⊙D的半径=2;

③求出∠ADC的度数,得弧ADC的周长,求出圆锥的底面半径,再求圆锥的底面的面积;

④△CDE中根据勾股定理的逆定理得∠DCE=90°,直线EC与⊙D相切.【详解】(1)①②如图所示:(2)①故答案为:C(6,2);D(2,0);②⊙D的半径=;故答案为:;③解:AC=,CD=2,AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧长=圆锥的底面的半径=,圆锥的底面的面积为π()2=;故答案为:;

(4)直线EC与⊙D相切.

证明:∵CD2+CE2=DE2=25,)∴∠DCE=90°.∴直线EC与⊙D相切.【点睛】本题综合考查了图形的性质和坐标的确定,是综合性较强,难度较大的综合题,圆的圆心D是关键.23、a1+3a,1【分析】根据分式的减法和除法可以化简题目中的式子,然后根据a1+3a﹣1=0可以得到a1+3a的值,从而可以求得所求式子的值.【详解】解:()÷=[]•a(a﹣1)=()•a(a﹣1)=•a(a﹣1)=a(a+3)=a1+3a,∵a1+3a﹣1=0,∴a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论