版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列命题中是假命题的是(▲)A.对顶角相等 B.两直线平行,同旁内角互补C.同位角相等 D.平行于同一条直线的两条直线平行2.如图,在长方形中,厘米,厘米,点在线段上以4厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动.当点的运动速度为()厘米/秒时,能够在某一时刻使与全等.A.4 B.6 C.4或 D.4或63.如图,在等边中,,将线段沿翻折,得到线段,连结交于点,连结、以下说法:①,②,③,④中,正确的有()A.个 B.个 C.个 D.个4.如图钢架中,∠A=a,焊上等长的钢条P1P2,P2P3,P3P4,P4P5来加固钢架,若P1A=P1P2,∠P5P4B=95°,则a等于()A.18° B.23.75° C.19° D.22.5°5.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地,设第二组的步行速度为x千米/小时,根据题意可列方程是().A. B.C. D.6.如图,长方形被分割成个正方形和个长方形后仍是中心对称图形,设长方形的周长为,若图中个正方形和个长方形的周长之和为,则标号为①正方形的边长为()A. B. C. D.7.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ8.在、、、、中分式的个数有().A.2个 B.3个 C.4个 D.5个9.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.以上都不对10.若,则内应填的式子是()A. B. C.3 D.11.计算的平方根为()A. B. C.4 D.12.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:尺码平均每天销售数量(件)该店主决定本周进货时,增加了一些码的衬衫,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数二、填空题(每题4分,共24分)13.若分式在实数范围内有意义,则x的取值范围是______.14.已知,求__________.15.计算:_____.16.已知xy=3,那么的值为______.17.要使分式有意义,则x的取值范围是_______.18.如图,△ABC是等边三角形,D是BC延长线上一点,DE⊥AB于点E,EF⊥BC于点F.若CD=3AE,CF=6,则AC的长为_____.三、解答题(共78分)19.(8分)某县教育行政部门为了了解八年级学生每学期参加综合实践活动的情况,随机抽样调查了该县八年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出参加抽样调查的八年级学生人数,并将频数直方图补充完整.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生人,请你估计“活动时间不少于天”的大约有多少人?20.(8分)若与成正比例,且时,.(1)求该函数的解析式;(2)求出此函数图象与,轴的交点坐标,并在本题所给的坐标系中画出此函数图象.21.(8分)分解因式:(1).(2).22.(10分)甲、乙、丙三明射击队员在某次训练中的成绩如下表:队员成绩(单位:环)甲66778999910乙67788889910丙66677810101010针对上述成绩,三位教练是这样评价的:教练:三名队员的水平相当;教练:三名队员每人都有自己的优势;教练:如果从不同的角度分析,教练和说的都有道理.你同意教练的观点吗?通过数据分析,说明你的理由.23.(10分)因式分解:(1)(2)24.(10分)在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,则∠ABD的度数为_____,∠BDF的度数为______;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN,若BN=DN,∠ACB=.(I)用表示∠BAD;(II)①求证:∠ABN=30°;②直接写出的度数以及△BMN的形状.25.(12分)星期四上午6点,王老师从学校出发,驾车到市里开会,8点准时到会场,中午12点钟回到学校,他在这一段时间内的行程(即离开学校的距离)与时间的关系可用图中的折线表示,请根据图中提供的信息,解答下列问题:(1)开会地点离学校多远?(2)会议结束后王老师驾车返回学校的平均速度是多少?26.已知,从小明家到学校,先是一段上坡路,然后是一段下坡路,且小明走上坡路的平均速度为每分钟走60m,下坡路的平均速度为每分钟走90m,他从家里走到学校需要21min,从学校走到家里需要24min,求小明家到学校有多远.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据对顶角的性质、平行线的性质、平行公理的推论逐项判断即可.【详解】A、对顶角相等,则此项是真命题B、两直线平行,同旁内角互补,则此项是真命题C、同位角不一定相等,则此项是假命题D、平行于同一条直线的两条直线平行,则此项是真命题故选:C.【点睛】本题考查了对顶角的性质、平行线的性质、平行公理的推论,掌握相交线与平行线的相关知识是解题关键.2、C【分析】设点Q的速度为xcm/s,分两种情形构建方程即可解决问题.【详解】解:设点的速度为,分两种情形讨论:①当,时,与全等,即,解得:,∴,∴;②当,时,与全等,即,,∴,∴.综上所述,满足条件的点的速度为或.故答案选:C.【点睛】本题考查矩形的性质、全等三角形的性质、路程、速度、时间之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.3、D【分析】由△ABD≌△ACE,△ACE≌△ACM,△ABC是等边三角形可以对①②进行判断,由AC垂直平分EM和直角三角形的性质可对③进行判断,由△ADM是等边三角形可对④进行判断.【详解】解:∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=∠ACB=60°,∵BD=CE,∴△ABD≌△ACE(SAS)∴AD=AE,∠BAD=∠CAE∵线段沿翻折,∴AE=AM,∠CAE=∠CAM,∴,故①正确,∴△ACE≌△ACM(SAS)∴∠ACE=∠ACM=60°,故②正确,由轴对称的性质可知,AC垂直平分EM,∴∠CNE=∠CNM=90°,∵∠ACM=60°,∴∠CMN=30°,∴在Rt△CMN中,,即,故③正确,∵∠BAD=∠CAE,∠CAE=∠CAM,∴∠BAD=∠CAM,∵∠∠BAD+∠CAD=60°,∴∠CAM+∠CAD=60°,即∠DAM=60°,又AD=AM∴△ADM为等边三角形,∴故④正确,所以正确的有4个,故答案为:D.【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、直角三角形的性质、线段垂直平分线的判定和性质、轴对称的性质等知识,解题的关键是灵活运用上述几何知识进行推理论证.4、C【分析】已知∠A=,根据等腰三角形等边对等角的性质以及三角形一个外角等于与它不相邻的两个内角和求出∠P5P4B=5,且∠P5P4B=95°,即可求解.【详解】∵P1A=P1P2=P2P3=P3P4=P4P5∴∠A=∠AP2P1=∴∵∠P5P4B=∴故选:C【点睛】本题考查了等腰三角形等边对等角的性质以及三角形一个外角等于与它不相邻的两个内角和.5、D【分析】根据第二组的速度可得出第一组的速度,依据“时间=路程÷速度”即可找出第一、二组分别到达的时间,再根据第一组比第二组早15分钟(小时)到达乙地即可列出分式方程,由此即可得出结论.【详解】解:设第二组的步行速度为x千米/小时,则第一组的步行速度为1.2x千米/小时,
第一组到达乙地的时间为:7.5÷1.2x;
第二组到达乙地的时间为:7.5÷x;
∵第一组比第二组早15分钟(小时)到达乙地,
∴列出方程为:.故选:D.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出分式方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.6、B【分析】设两个大正方形边长为x,小正方形的边长为y,由图可知周长和列方程和方程组,解答即可.【详解】解:长方形被分成个正方形和个长方形后仍是中心对称图形,两个大正方形相同、个长方形相同.设小正方形边长为,大正方形的边长为,小长方形的边长分别为、,大长方形边长为、.长方形周长,即:,,.个正方形和个长方形的周长和为,,,.标号为①的正方形的边长.故选:B.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.7、D【解析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.8、A【分析】根据分式的定义:分母中含有字母的式子叫分式可判别.【详解】分母中含有字母的式子叫分式,由此可知,和是分式,分式有2个;故选A.【点睛】本题考查了分式的定义,较简单,熟记分式的定义是解题的关键.9、B【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,根据全等三角形对应边相等可得AC=AE,求出△DEB的周长=AB.【详解】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AC=AE,∴可得△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长为6cm.故选:B.【点睛】角平分线上的点到角的两边的距离相等与根据HL证明全等,等量代换理清逻辑。10、A【分析】根据题意得出=,利用分式的性质求解即可.【详解】根据题意得出=故选:A.【点睛】本题主要考查分式的基本性质,掌握分式的基本性质是解题的关键.11、B【解析】先根据算术平方根的定义求出的值,然后再根据平方根的定义即可求出结果.【详解】∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2,故选B.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12、C【分析】销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.
故选:C.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.二、填空题(每题4分,共24分)13、x≠-2【解析】根据分式有意义的条件进行求解即可.【详解】由题意得:x+2≠0,解得:x≠-2,故答案为:x≠-2.【点睛】本题考查了分式有意义的条件,熟知“分式的分母不为0”时分式有意义是解题的关键.14、1【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【详解】∵,
即,
∴,
解得,故答案为:1.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.15、.【解析】分别根据负指数幂和绝对值进行化简每一项即可解答;【详解】解:;故答案为.【点睛】本题考查实数的运算,负整数指数幂的运算;掌握实数的运算性质,负整数指数幂的运算法则是解题的关键.16、±2【解析】分析:先化简,再分同正或同负两种情况作答.详解:因为xy=3,所以x、y同号,于是原式==,当x>0,y>0时,原式==2;当x<0,y<0时,原式==−2故原式=±2.点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.17、x≠1【分析】分式有意义的条件:分母不等于零,依此列不等式解答.【详解】∵分式有意义,∴,解得x≠1故答案为:x≠1.【点睛】此题考查分式有意义的条件,正确掌握分式有意义的条件列不等式是解题的关键.18、1【分析】利用“一锐角为30°的直角三角形中,30°所对的直角边等于斜边的一半”,通过等量代换可得.【详解】解:AC与DE相交于G,如图,∵为等边三角形,∴AB=BC=AC,∠A=∠B=∠ACB=60°,∵DE⊥AE,∴∠AGE=30°,∴∠CGD=30°,∵∠ACB=∠CGD+∠D,∴∠D=30°,∴CG=CD,设AE=x,则CD=3x,CG=3x,在中,AG=2AE=2x,∴AB=BC=AC=5x,∴BE=4x,BF=5x﹣6,在中,BE=2BF,即4x=2(5x﹣6),解得x=2,∴AC=5x=1.故答案为1.【点睛】直角三角形的性质,30°所对的直角边等于斜边的一半为本题的关键.三、解答题(共78分)19、(1)调查的初一学生人数200人;补图见解析;(2)中位数是4(天),众数是4(天);(3)估计“活动时间不少于5天”的大约有2700人.【分析】(1)由参加实践活动为2天的人数除以所占的百分比即可求出八年级学生总数,根据单位1减去其他的百分比求出a的值,由学生总数乘以活动实践是5天与7天的百分比求出各自的人数,补全统计图即可;(2)出现次数最多的天数为4天,故众数为4;将实践活动的天数按照从小到大顺心排列,找出最中间的两个天数,求出平均数即可得到中位数;(3)求出活动时间不少于4天的百分比之和,乘以6000即可得到结果.【详解】解:(1)调查的初一学生人数:20÷10%=200(人),“活动时间不少于5天”的人数为:200×(1-15%-10%-5%-15%-30%)=50(人),“活动时间不少于7天”的人数为:200×5%=10(人),补全统计图如下:(2)根据中位数的概念,中位数应是第100人的天数和101人的天数的平均数,即中位数是4(天),根据众数的概念,则众数是人数最多的天数,即众数是4(天);(3)估计“活动时间不少于5天”的大约有:(200﹣20﹣30﹣60)÷200×6000=2700(人).【点睛】本题考查了频率分布直方图和扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.20、(1);(2)该函数与x轴的交点为(-1,0),与y轴的交点为(0,2),图象见解析【分析】(1)根据正比例的定义可设,将,代入,即可求出该函数的解析式;(2)根据坐标轴上点的坐标特征求出该函数与坐标轴的交点坐标,然后利用两点法画该函数的图象即可.【详解】解:(1)根据与成正比例,设将,代入,得解得:∴该函数的解析式为:(2)当x=0时,y=2;当y=0时,x=-1∴该函数与x轴的交点为(-1,0),与y轴的交点为(0,2)∵为一次函数,它的图象为一条直线,∴找到(-1,0)和(0,2),描点、连线即可,如下图所示:该直线即为所求.【点睛】此题考查的是求函数的解析式、求函数与坐标轴的交点坐标和画一次函数的图象,掌握用待定系数法求函数的解析式、坐标轴上点的坐标特征和用两点法画一次函数的图象是解决此题的关键.21、(1)2(x+3)(x-3);(2)(a-2b+3)(a-2b-3)【分析】(1)先提取公因式,然后利用平方差公式因式分解即可;(2)利用完全平方式和平方差公式因式分解即可.【详解】解:(1)==2(x+3)(x-3)(2)==(a-2b+3)(a-2b-3)【点睛】此题考查的是因式分解,掌握提公因式法和公式法因式分解是解决此题的关键.22、同意教练C的观点,见解析【分析】依次求出甲、乙、丙三名队员成绩的平均数、中位数、方差及众数,根据数据的稳定性即可判断.【详解】解:依题意渴求得:甲队员成绩的平均数为=8;乙队员成绩的平均数为=8;丙队员成绩的平均数为=8;甲队员成绩的中位数为,乙队员成绩的中位数为,丙队员成绩的中位数为,甲队员成绩的方差为=[(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(9−8)2+(9−8)2+(9−8)2+(9−8)2+(10−8)2]=1.8;乙队员成绩的方差为=[(6−8)2+(7−8)2+(7−8)2+(8−8)2+(8−8)2+(8−8)2+(8−8)2+(9−8)2+(9−8)2+(10−8)2]=1.2;丙队员成绩的方差为=[(6−8)2+(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(10−8)2+(10−8)2+(10−8)2+(10−8)2]=3;由于甲、乙、丙三名队员成绩的平均数分别为:,,,所以,三名队员的水平相当.故,教练A说的有道理.由于甲、乙、丙三名队员的成绩的中位数分别为:8.5;8;7.5.所以,从中位数方面分析,甲队员有优势.由于甲、乙、丙三名队员的成绩的方差分别为:,,.所以,从方差方面分析,乙队员有优势.由于甲、乙、丙三名队员的成绩的众数分别为:9;8;10.所以,从众数方面分析,丙队员有优势.故,教练B说的有道理.所以,同意教练C的观点.【点睛】此题主要考查数据分析的应用,解题的关键是熟知平均数、中位数、方差及众数的求解方法.23、(1)2(x+2)(x-2);(2)(x+1)2(x-1)2【分析】(1)先提取公因式2,再利用平方差公式进行计算;(2)先运用完全平方公式,再利用平方差公式进行因式分解.【详解】(1)=2(x2-4)=2(x+2)(x-2);(2)===(x+1)2(x-1)2【点睛】考查了因式分解,解题关键是熟记完全平方公式和平方差公式的特点,并利用其进行因式分解.24、(1)10°,20°;(2)(Ⅰ);(II)①证明见解析;②=40°,△BMN等腰三角形.【分析】(1)由等边三角形的性质可得AD=AC,∠CAD=60°,利用等量代换可得AD=AB,根据等腰三角形的性质即可求出∠ABD的度数,由等腰三角形“三线合一”的性质可得∠ADE=30°,进而可求出∠BDF的度数;(2)(Ⅰ)根据等腰三角形的性质可用表示出∠BAC,由∠CAD=60°即可表示出∠BAD;(Ⅱ)①如图,连接AN,由角平分线的定义可得∠CAN=,根据等腰三角形“三线合一”的性质可得DN是AC的垂直平分线,可得AN=CN,∠CAN=∠CAN,即可求出∠DAN=+60°,由(Ⅰ)可知∠BAD=240°-2,由△ABN≌△AND可得∠BAN=∠DAN,可得∠BAN=120°+,列方程即可求出的值,利用外角性质可求出∠ANM的度数,根据三角形内角和可求出∠AMN的度数,利用外角性质可求出∠MNB的度数,可得∠BMN=∠ABN,可证明△BMN是等腰三角形.【详解】(1)∵△ACD是等边三角形,∴AD=AC=CD,∠CAD=∠ADC=60°,∵AB=AC,∴AD=AB,∵∠BAC=100°,∴∠BAD=∠BAC+∠CAD=160°,∴∠ABD=∠ADB=(180°-∠BAD)=10°,∵点E为AC中点,∴∠ADE=∠CDE=30°,∴∠BDF=∠ADE-∠ADB=20°,故答案为:10°,20°(2)(Ⅰ)∵AB=AC,∠ACB=,∴∠ABC=∠ACB=,∴,∵△ACD为等边三角形,∴∠CAD=60°,∴∠BAD=∠BAC+∠CAD=240°+.(II)①如图,连接,∵△ACD为等边三角形,∴,在△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑工程临时用工合同
- 酒店改造装饰装修工程施工组织设计方案
- 教师学生申诉制度
- 长沙市劳动合同条例
- 原公司注销委托其他公司收款协议书
- Naringin-Dihydrochalcone-Standard-生命科学试剂-MCE
- Naphazoline-nitrate-Standard-生命科学试剂-MCE
- N-Acetyl-DL-methionine-Standard-生命科学试剂-MCE
- MK-0434-生命科学试剂-MCE
- 控制性详细规划课程设计
- 防雷设施设备巡查表1200字
- 成人雾化吸入护理-2023中华护理学会团体标准
- 中小学衔接教育
- 提高手术室手卫生依从性专家讲座
- 傅雷家书读后感3000字(3篇)
- 房建工程二次预埋施工技术交底强弱电管线预埋
- 三年级上册信息技术课件-3.4畅游网上世界 |粤教版
- GBZ(卫生) 5-2016职业性氟及其无机化合物中毒的诊断
- 音乐能告诉我们什么
- GB/T 18952-2017橡胶配合剂硫磺及试验方法
- 膝关节置换术的护理课件
评论
0/150
提交评论