版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,点C是OA的中点,过点C作CD⊥OA于C交一次函数图象于点D,P是OB上一动点,则PC+PD的最小值为()A.4 B. C.2 D.2+22.△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5 B.a=4,b=5,c=6C.a=6,b=8,c=10 D.a=5,b=12,c=133.的算术平方根是()A.5 B.﹣5 C. D.4.下列图形中,对称轴最多的图形是()A. B. C. D.5.计算:=()A.+ B.+ C.+ D.+6.直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1 B.5 C. D.5或7.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是()A.AB两地相距1000千米B.两车出发后3小时相遇C.动车的速度为D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地8.已知A,B两点在y=2x+1上,A的坐标为(1,m),B的坐标为(3,n),则()A.m=n B.m<n C.m>n D.无法确定9.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2) C.(3,﹣2) D.(﹣3,﹣2)10.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC④BA+BC=2BF其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④11.某市为了处理污水需要铺设一条长为2000米的管道,实际施工时,×××××××,设原计划每天铺设管道米,则可列方程,根据此情景,题目中的“×××××××”表示所丢失的条件,这一条件为()A.每天比原计划多铺设10米,结果延期10天完成任务B.每天比原计划少铺设10米,结果延期10天完成任务C.每天比原计划少铺设10米,结果提前10天完成任务D.每天比原计划多铺设10米,结果提前10天完成任务12.根据下列条件,只能画出唯一的△ABC的是()A.AB=3BC=4 B.AB=4BC=3∠A=30°C.∠A=60°∠B=45°AB=4 D.∠C=60°AB=5二、填空题(每题4分,共24分)13.对于实数a,b,c,d,规定一种运算=ad-bc,如=1×(-2)-0×2=-2,那么当=27时,则x=_____.14.如图,点D、E分别在线段AB、AC上,且AD=AE,若由SAS判定,则需要添加的一个条件是_________.15.若a+b=4,ab=1,则a2b+ab2=________.16.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,分别以三角形的三条边为边作正方形,则三个正方形的面S1+S2+S3的值为_______.17.已知,,代数式__________.18.如图,在中,,平分,交于点,若,,则周长等于__________.三、解答题(共78分)19.(8分)如图所示,在直角坐标系中,△ABC的三个顶点的坐标分别为A(1,5),B(1,−2),C(4,0).(1)请在图中画出△ABC关于y轴对称的△A′B′C′,并写出三个顶点A′、B′、C′的坐标.(2)求△ABC的面积.20.(8分)甲、乙两车从A城出发沿一条笔直公路匀速行驶至B城在整个行驶过程中,甲、乙两车离开A城的距离千米与甲车行驶的时间小时之间的函数关系如图所示.,B两城相距______千米,乙车比甲车早到______小时;甲车出发多长时间与乙车相遇?若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?21.(8分)我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个关的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式.称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程;(2)如图3所示,,请你添加适当的辅助线证明结论.22.(10分)小山同学结合学习一次函数的经验和自己的思考,按以下方式探究函数的图象与性质,并尝试解决相关问题.请将以下过程补充完整:(1)判断这个函数的自变量x的取值范围是________________;(2)补全表格:(3)在平面直角坐标系中画出函数的图象:(4)填空:当时,相应的函数解析式为___(用不含绝对值符合的式子表示);(5)写出直线与函数的图象的交点坐标.23.(10分)如图所示,在中,,D是上一点,过点D作于点E,延长和,相交于点F,求证:是等腰三角形.24.(10分)解方程:(1)(2)25.(12分)阅读材料:解分式不等式<1解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①或②解①得:无解;解②得:﹣2<x<1所以原不等式的解集是﹣2<x<1请仿照上述方法解下列不等式:(1)(2)(x+2)(2x﹣6)>1.26.如图,、、三点在同一条直线上,,,.(1)求证:;(2)若,求的度数.
参考答案一、选择题(每题4分,共48分)1、C【分析】作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,利用一次函数图象上点的坐标特征可得出点A的坐标,由点C是OA的中点可得出点C的坐标,由点C,C′关于y轴对称可得出CC′的值及PC=PC′,再利用勾股定理即可求出此时C′D(即PC+PD)的值,此题得解.【详解】解:作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,如图所示.当y=0时,﹣1x+4=0,解得:x=1,∴点A的坐标为(1,0).∵点C是OA的中点,∴OC=1,点C的坐标为(1,0).当x=1时,y=﹣1x+4=1,∴CD=1.∵点C,C′关于y轴对称,∴CC′=1OC=1,PC=PC′,∴PC+PD=PC′+PD=C′D=.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征、线段垂直平分线的性质、勾股定理以及轴对称最短路线问题,利用两点之间线段最短,找出点P所在的位置是解题的关键.2、B【解析】根据勾股定理进行判断即可得到答案.【详解】A.∵32+42=52,∴△ABC是直角三角形;B.∵52+42≠62,∴△ABC不是直角三角形;C.∵62+82=102,∴△ABC是直角三角形;D.∵122+42=132,∴△ABC是直角三角形;故选:B.【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理.3、C【解析】解:∵=5,而5的算术平方根即,∴的算术平方根是故选C.4、A【分析】先根据轴对称图形的定义确定各选项图形的对称轴条数,然后比较即可选出对称轴条数最多的图形.【详解】解:A、圆有无数条对称轴;
B、正方形有4条对称轴;
C、该图形有3条对称轴;
D、长方形有2条对称轴;
故选:A.【点睛】本题考查了轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.5、A【解析】利用完全平方公式化简即可求出值.【详解】解:原式=y2﹣y+,故选A.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6、D【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边==;当第三边为斜边时,3和4为直角边,第三边==5,故选:D.【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.7、C【解析】可以用物理的思维来解决这道题.【详解】未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+V2)=1000,所以C选项错误;D选项正确.【点睛】理解转折点的含义是解决这一类题的关键.8、B【分析】利用一次函数图象上点的坐标特征可得出m,n的值,再根据其增减性比较后即可得出结论.【详解】解:将点A(1,m),B(3,n)代入y=2x+1,解得m=3,n=7∵3<7,∴m<n.故选:B.【点睛】本题考查一次函数上点的特征和增减性,熟练掌握一次函数的相关性质是关键.9、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.10、D【分析】易证,可得,AD=EC可得①②正确;再根据角平分线的性质可求得,即③正确,根据③可判断④正确;【详解】∵BD为∠ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBD中,BD=BC,∠ABD=∠CDB,BE=BA,∴△(SAS),故①正确;∵BD平分∠ABC,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE是等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,故③正确;作EG⊥BC,垂足为G,如图所示:∵E是BD上的点,∴EF=EG,在△BEG和△BEF中∴△BEG≌△BEF,∴BG=BF,在△CEG和△AFE中∴△CEG≌△AFE,∴AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;11、D【分析】工作时间=工作总量÷工作效率.那么表示原来的工作时间,那么就表示现在的工作时间,10就代表原计划比现在多的时间.【详解】解:原计划每天铺设管道米,那么就应该是实际每天比原计划多铺了10米,而用则表示用原计划的时间−实际用的时间=10天,那么就说明每天比原计划多铺设10米,结果提前10天完成任务.
故选:D.【点睛】本题主要考查的是分式方程的实际应用,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.12、C【解析】由所给边、角条件只能画出唯一的△ABC,说明当按所给条件画两次时,得到的两个三角形是全等的,即所给条件要符合三角形全等的判定方法;而在四个选项中,当两个三角形分别满足A、B、D三个选项中所列边、角对应相等时,两三角形不一定全等;当两个三角形满足C选项中所列边、角对应相等时,三角形是一定全等的.故选C.二、填空题(每题4分,共24分)13、1【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x的方程,然后解方程即可求出x的值.【详解】解:∵=27,∴(x+1)(x-1)-(x+2)(x-3)=27,∴x2-1-(x2-x-6)=27,∴x2-1-x2+x+6=27,∴x=1;故答案为:1.【点睛】本题考查了新定义运算,及灵活运用新定义的能力,根据新定义把所给算式转化为一元一次方程是解答本题的关键.14、【分析】题目中已给出一组对边和一个公共角,再找到公共角的另一组对边即可.【详解】在和中,故答案为:.【点睛】本题主要考查用SAS证明三角形全等,掌握全等三角形的判定方法是解题的关键.15、1【解析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a2b+ab2=ab(a+b)=1×1=1.故答案为:1.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.16、200【分析】根据正方形的面积公式和勾股定理,即可得到阴影部分的面积S1+S2+S3的值.【详解】解:∵∠ACB=90°,AC=6,BC=8,∴AB2=AC2+BC2=62+82=100∴S1+S2+S3=AC2+BC2+AB2=62+82+100=200故答案为:200【点睛】本题考查勾股定理,解题关键是将勾股定理和正方形的面积公式进行结合应用.17、18【分析】先提取公因式ab,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:=当,时,原式,故答案为:18【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.18、6+6【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC,再求出AB和BD即可.【详解】因为在中,,所以所以AD=2CD=4所以AC=因为平分,所以=2所以所以BD=AD=4,AB=2AC=4所以周长=AC+BC+AB=++2+4==6+6故答案为:6+6【点睛】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键.三、解答题(共78分)19、(1)画图见解析;(2)面积为10.1.【分析】(1)根据关于y轴对称的点的坐标特点画出△A′B′C′,再写出△A′B′C′各点的坐标;
(2)根据三角形的面积公式计算.【详解】(1)如图所示,△A′B′C′即为所求,A′(-1,1),B′(-1,-2),C′(-4,0);
(2)S△ABC=×7×3=10.1.【点睛】考查了作图-轴对称变换,解题关键是熟记关于y轴对称点的性质(纵坐标不变,横坐标互为相反数).20、(1)300千米,1小时(2)2.5小时(3)1小时【解析】(1)根据函数图象可以直接得到A,B两城的距离,乙车将比甲车早到几小时;(2)由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,求得两函数图象的交点即可(3)再令两函数解析式的差小于或等于20,可求得t可得出答案.【详解】(1)由图象可知A、B两城市之间的距离为300km,甲比乙早到1小时,(2)设甲车离开A城的距离y与t的关系式为y甲=kt,
把(5,300)代入可求得k=60,
∴y甲=60t,
设乙车离开A城的距离y与t的关系式为y乙=mt+n,
把(1,0)和(4,300)代入可得,
解得:,
∴y乙=100t-100,
令y甲=y乙,可得:60t=100t-100,
解得:t=2.5,
即甲、乙两直线的交点横坐标为t=2.5,
∴甲车出发2.5小时与乙车相遇(3)当y甲-y乙=20时60t-100t+100=20,t=2当y乙-y甲=20时100t-100-60t=20,t=3∴3-2=1(小时)∴两车都在行驶过程中可以通过无线电通话的时间有1小时【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,特别注意t是甲车所用的时间.21、(1)见解析;(2)见解析【分析】(1)由图1可知:四个全等的直角三角形的面积+中间小正方形的面积=大正方形的面积,然后化简即可证明;(2)如图,过A作交BC线于D,先证明可得,,然后根据梯形EDBA的面积列式化简即可证明.【详解】(1)证明:大正方形面积为:整理得∴;(2)过A作交BC线于D∵,,,∴,∴,∴,∴∴∴.【点睛】本题主要考查了运用几何图形来证明勾股定理,矩形和正方形的面积,三角形的面积,锻炼了同学们的数形结合的思想方法.22、(1)全体实数;(2)见解析;(3)见解析;(4);(5)【分析】(1)由函数解析式:可以得到自变量的取值范围,(2)利用函数解析式给出的自变量的值得出函数值可以得到答案.(3)根据自变量与函数值的对应值在平面直角坐标系中描好点并连线得到图像.(4)在的条件下去掉绝对值符号,得到函数解析式.(5)观察图像写出交点坐标即可.【详解】(1)因为:,所以函数自变量的取值范围是全体实数.(2)利用把分别代入解析式计算出函数的值填入下表:(3)描点并连线(见图5).(4)因为:,所以所以:(5)在同一直角坐标系中画出的图像,观察图像得交点为(如图6所示).【点睛】本题考查了一次函数图象上点的坐标特征,能熟记一次函数的图象和性质是解此题的关键.23、证明见解析.【分析】根据等边对等角可得∠B=∠C,再根据直角三角形两锐角互余和等角的余角相等可得∠F=∠2,再结合对顶角的定义∠F=∠1,最后根据等角对等边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 亲子田园活动策划案
- 培训费用预算管理
- 《全球互动网招商》课件
- 易制爆化学品购销使用制度
- 《汽车文化之沃尔沃》课件
- 小学四年级数学三位数乘两位数水平练习练习题
- 子宫全切术后护理
- 行业等级评价信息的收集的方法渠道
- 新大陆云服务平台的使用网关管理智慧养老技术概论
- 现代办公事务处理缮印
- 历史幽愤的现代回响——《记念刘和珍君》课堂实录
- 英语单词分类大全-20170913
- 信息技术课课堂教学评价表
- 施工进度计划书
- 35KV集电线路铁塔组立专项方案
- 不锈钢管规格表大全以及理论重量表大全
- 公司保密制度-附保密分类表
- 滑雪场管理手册
- 人类养生长寿的新方法---“中枢平衡”健体强身模式
- 胸外科技术操作规范
- 环氧树脂胶配制方法
评论
0/150
提交评论