版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广州市从化区从化七中学年度数学九上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名读听写小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86 B.87 C.88 D.892.计算的结果等于()A.-6 B.6 C.-9 D.93.如图,AB,AC分别为⊙O的内接正三角形和内接正四边形的一边,若BC恰好是同圆的一个内接正n边形的一边,则n的值为()A.8 B.10 C.12 D.154.下列几何体中,主视图是三角形的是()A. B. C. D.5.若反比例函数的图象过点A(5,3),则下面各点也在该反比例函数图象上的是()A.(5,-3) B.(-5,3) C.(2,6) D.(3,5)6.下列是世界各国银行的图标,其中不是轴对称图形的是()A. B. C. D.7.在一个不透明的盒子中装有个白球,若于个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A. B. C. D.8.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A.6cm B.cm C.8cm D.cm9.对于二次函数y=﹣(x﹣2)2﹣3,下列说法正确的是()A.当x>2时,y随x的增大而增大 B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣3) D.图象与x轴有两个交点10.下列图形中,是相似形的是()A.所有平行四边形 B.所有矩形 C.所有菱形 D.所有正方形11.如图,四边形是的内接四边形,与的延长线交于点,与的延长线交于点,,,则的度数为()A.38° B.48° C.58° D.68°12.抛物线的顶点坐标是()A. B. C. D.二、填空题(每题4分,共24分)13.已知点B位于点A北偏东30°方向,点C位于点A北偏西30°方向,且AB=AC=8千米,那么BC=________千米.14.一只不透明的袋子中装有红球和白球共个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是,则袋中有__________.15.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是_____16.从1,2,3三个数字中任取两个不同的数字,其和是奇数的概率是_________.17.在双曲线的每个分支上,函数值y随自变量x的增大而增大,则实数m的取值范围是________.18.如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为_____.三、解答题(共78分)19.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点逆时针旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.求证:EF=BC.20.(8分)已知二次函数y=ax2+bx+3的图象经过点(-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?21.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于60元,经市场调查,每天的销售量y(单位:千克)与每千克售价x(单位:元)满足一次函数关系,部分数据如下表:售价x(元/千克)455060销售量y(千克)11010080(1)求y与x之间的函数表达式;(2)设商品每天的总利润为w(单位:元),则当每千克售价x定为多少元时,超市每天能获得的利润最大?最大利润是多少元?22.(10分)在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是,与的位置关系是;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).(3)如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.23.(10分)如图,取△ABC的边AB的中点O,以O为圆心AB为半径作⊙O交BC于点D,过点D作⊙O的切线DE,若DE⊥AC,垂足为点E.(1)求证:△ABC是等腰三角形;(2)若DE=1,∠BAC=120°,则的长为.24.(10分)解下列一元二次方程.(1)x2+x-6=1;(2)2(x-1)2-8=1.25.(12分)综合与实践:如图,已知中,.(1)实践与操作:作的外接圆,连结,并在图中标明相应字母;(尺规作图,保留作图痕迹,不写作法)(2)猜想与证明:若,求扇形的面积.26.计算:2cos30°+(π﹣3.14)0﹣
参考答案一、选择题(每题4分,共48分)1、C【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:(分),∴小莹的个人总分为88分;故选:C.【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.2、D【分析】根据有理数乘方运算的法则计算即可.【详解】解:,故选:D.【点睛】本题考查了有理数的乘方,掌握运算法则是解题的关键.3、C【分析】根据图形求出正多边形的中心角,再由正多边形的中心角和边的关系:,即可求得.【详解】连接OA、OB、OC,如图,∵AC,AB分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOC==90°,∠AOB==120°,∴∠BOC=∠AOB﹣∠AOC=30°,∴n==12,即BC恰好是同圆内接一个正十二边形的一边.故选:C.【点睛】本题考查正多边形的中心角和边的关系,属基础题.4、C【分析】主视图是从正面看所得到的图形,据此判断即可.【详解】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.【点睛】此题主要考查了几何体的三视图,解此题的关键是熟练掌握几何体的主视图.5、D【解析】先利用待定系数法求出反比例函数的解析式,然后将各选项的点代入验证即可.【详解】将点代入得:,解得则反比例函数为:A、令,代入得,此项不符题意B、令,代入得,此项不符题意C、令,代入得,此项不符题意D、令,代入得,此项符合题意故选:D.【点睛】本题考查了待定系数法求函数解析式、以及确定某点是否在函数上,依据题意求出反比例函数解析式是解题关键.6、D【解析】本题考查的是轴对称图形的定义.把图形沿某条直线折叠直线两旁的部分能够重合的图形叫轴对称图形.A、B、C都可以,而D不行,所以D选项正确.7、B【分析】根据题意可知摸出白球的概率=白球个数÷白球与黄球的和,代入求x即可.【详解】解:设黄球个数为x,∵在一个不透明的盒子中装有个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,∴=8÷(8+x)∴x=4,经检验x=4是分式方程的解,故选:B【点睛】本题考查的是利用频率估计概率,正确理解题意是解题的关键.8、B【解析】试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==6cm,∴圆锥的高为=3cm故选B.考点:圆锥的计算.9、B【分析】根据二次函数的性质对进行判断;通过解方程﹣(x﹣2)2﹣3=0对D进行判断即可.【详解】∵二次函数y=﹣(x﹣2)2﹣3,∴当x>2时,y随x的增大而减小,故选项A错误;当x=2时,该函数取得最大值,最大值是﹣3,故选项B正确;图象的顶点坐标为(2,﹣3),故选项C错误;当y=0时,0=﹣(x﹣2)2﹣3,即,无解,故选项D错误;故选:B.【点睛】本题考查了二次函数的图象和性质,把求二次函数与轴的交点问题转化为解关于的一元二次方程问题可求得交点横坐标,牢记其的顶点坐标、对称轴及开口方向是解答本题的关键.10、D【分析】根据对应角相等,对应边成比例的两个多边形相似,依次分析各项即可判断.【详解】所有的平行四边形、矩形、菱形均不一定是相似多边形,而所有的正方形都是相似多边形,故选D.【点睛】本题是判定多边形相似的基础应用题,难度一般,学生只需熟练掌握特殊四边形的性质即可轻松完成.11、A【分析】根据三角形的外角性质求出,然后根据圆内接四边形的性质和三角形内角和定理计算即可.【详解】解:=故选A【点睛】本题考查了圆周角定理及其推论.12、D【分析】当时,是抛物线的顶点,代入求出顶点坐标即可.【详解】由题意得,当时,是抛物线的顶点代入到抛物线方程中∴顶点的坐标为故答案为:D.【点睛】本题考查了抛物线的顶点坐标问题,掌握求二次函数顶点的方法是解题的关键.二、填空题(每题4分,共24分)13、8【解析】因为点B位于点A北偏东30°方向,点C位于点A北偏西30°方向,所以∠BAC=60°,因为AB=AC,所以△ABC是等边三角形,所以BC=AB=AC=8千米,故答案为:8.14、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】设袋中有x个红球.
由题意可得:,解得:,
故答案为:1.【点睛】本题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.15、【解析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【详解】解:∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,
∵点E是边BC的中点,
∴BE=BC=AD,
∴△BEF∽△DAF,∴∴EF=AF,
∴EF=AE,
∵点E是边BC的中点,
∴由矩形的对称性得:AE=DE,
∴EF=DE,设EF=x,则DE=3x,
∴DF==2x,∴tan∠BDE===;故答案为:.【点睛】本题考查相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.16、【分析】由1,2,3三个数字组成的无重复数字的两位数字共有6个,其中奇数有4个,由此求得所求事件的概率.【详解】解:由1,2,3三个数字组成的无重复数字的两位数字共有3×2=6个,其中奇数有2×2=4个,
故从中任取一个数,则恰为奇数的概率是
,
故答案为:.【点睛】本题考查古典概型及其概率计算公式的应用,属于基础题.解题的关键是掌握概率公式进行计算.17、m<﹣1【分析】根据在双曲线的每个分支上,函数值y随自变量x的增大而增大,可以得到m+1<0,从而可以求得m的取值范围.【详解】∵在双曲线的每个分支上,函数值y随自变量x的增大而增大,∴m+1<0,解得,m<﹣1,故答案为m<﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质,解题的关键是明确题意,利用反比例函数的性质解答.18、20【解析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【详解】当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°,∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20.【点睛】本题考查平移的性质,解题的关键是确定出当AE⊥BC时,四边形AEFD的周长最小.三、解答题(共78分)19、见解析【分析】由旋转前后图形全等的性质可得AC=AF,由“SAS”可证△ABC≌△AEF,可得EF=BC.【详解】证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF,∵将线段AC绕A点旋转到AF的位置,∴AC=AF,在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;【点睛】本题主要考查的是旋转前后图形全等的性质以及全等三角形的判定,掌握全等三角形的判定是解题的关键.20、(1)y=﹣x2﹣2x+1;(2)点P(﹣2,1)在这个二次函数的图象上,【分析】(1)根据给定点的坐标,利用待定系数法求出二次函数解析式即可;
(2)代入x=-2求出y值,将其与1比较后即可得出结论.【详解】(1)设二次函数的解析式为y=ax2+bx+1;∵二次函数的图象经过点(﹣1,0),(2,﹣5),则有:解得;∴y=﹣x2﹣2x+1.(2)把x=-2代入函数得y=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1,∴点P(﹣2,1)在这个二次函数的图象上,【点睛】考查待定系数法求二次函数解析式,二次函数图象上点的坐标特征,掌握待定系数法求二次函数解析式是解题的关键.21、(1)y=﹣2x+200(40≤x≤60);(2)售价为60元时获得最大利润,最大利润是1600元.【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.【详解】解:(1)设y=kx+b,将(50,100)、(60,80)代入,得:,解得:,∴y=﹣2x+200(40≤x≤60);(2)w=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∵40≤x≤60,∴当x=60时,w取得最大值为1600,答:w与x之间的函数表达式为W=﹣2x2+280x﹣8000,售价为60元时获得最大利润,最大利润是1600元.【点睛】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.22、(1)BP=CE;CE⊥AD;(2)成立,理由见解析;(3).【解析】(1)①连接AC,证明△ABP≌△ACE,根据全等三角形的对应边相等即可证得BP=CE;②根据菱形对角线平分对角可得,再根据△ABP≌△ACE,可得,继而可推导得出,即可证得CE⊥AD;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,利用(1)的方法进行证明即可;(3)连接AC交BD于点O,CE,作EH⊥AP于H,由已知先求得BD=6,再利用勾股定理求出CE的长,AP长,由△APE是等边三角形,求得,的长,再根据,进行计算即可得.【详解】(1)①BP=CE,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;②CE⊥AD,∵菱形对角线平分对角,∴,∵△ABP≌△ACE,∴,∵,∴,∴,∴,∴CF⊥AD,即CE⊥AD;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE,,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD,∴(1)中的结论:BP=CE,CE⊥AD仍然成立;(3)连接AC交BD于点O,CE,作EH⊥AP于H,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ABC,∵∠ABC=60°,,∴∠ABO=30°,∴,BO=DO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵,,∴,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴,∵△APE是等边三角形,∴,,∵,∴,===,∴四边形ADPE的面积是.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形判定与性质等,熟练掌握相关知识,正确添加辅助线是解题的关键.23、(1)证明见解析;(2)【分析】(1)连接OD,利用等边对等角证得∠1=∠B,利用切线的性质证得OD∥AC,推出∠B=∠C,从而证明△ABC是等腰三角形;(2)连接AD,利用等腰三角形的性质证得∠B=∠C=30,BD=CD=2,求得直径AB=,利用弧长公式即可求解.【详解】(1)证明:连结OD.∵OB=OD,∴∠1=∠B,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工业设计权许可协议
- 2024标准汽车维修承包合同范本
- 2024建筑设备租赁合同格式范本
- 2024年商业物业买卖合同
- 2024-2025学年高中化学第三章有机化合物4.1糖类课时评价含解析新人教版必修2
- 2024年城市渣土车司机派遣协议
- 2024年工程监理合同(建筑领域)
- 网络广告投放与推广合作框架协议
- PROTAC-FGFR2-degrader-1-生命科学试剂-MCE
- proMMP-9-inhibitor-3c-生命科学试剂-MCE
- 工地小卖部承包协议书范本(2024版)
- 医疗器械创新售后服务体系建设与应用示范阅读札记
- 电信网和互联网安全防护安全风险评估报告模板
- 全员消防安全责任制
- 汽油机油低速早燃性能测试方法编制说明
- 新闻稿件编辑出错检讨书范文
- 2023-2024学年山东省济南市历城区九年级(上)期中英语试卷
- 2024年全国注册消防工程师之消防技术综合能力考试历年考试题(详细参考解析)
- 垂直绿化养护要点及病虫害防治
- IWAY6.0实施计划完整
- 《慈母情深》教学设计与指导课件(第二课时)
评论
0/150
提交评论