黑龙江省哈尔滨市巴彦县2022年九年级数学第一学期期末监测试题含解析_第1页
黑龙江省哈尔滨市巴彦县2022年九年级数学第一学期期末监测试题含解析_第2页
黑龙江省哈尔滨市巴彦县2022年九年级数学第一学期期末监测试题含解析_第3页
黑龙江省哈尔滨市巴彦县2022年九年级数学第一学期期末监测试题含解析_第4页
黑龙江省哈尔滨市巴彦县2022年九年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ADC的度数是()A.80° B.160° C.100° D.40°2.从某多边形的一个顶点出发,可以作条对角线,则这个多边形的内角和与外角和分别是()A.; B.; C.; D.;3.若抛物线y=﹣x2+bx+c经过点(﹣2,3),则2c﹣4b﹣9的值是()A.5B.﹣1C.4D.184.如图所示是二次函数y=ax2﹣x+a2﹣1的图象,则a的值是()A.a=﹣1 B.a= C.a=1 D.a=1或a=﹣15.下列调查中,最适合采用抽样调查方式的是()A.对某飞机上旅客随身携带易燃易爆危险物品情况的调查B.对我国首艘国产“002型”航母各零部件质量情况的调查C.对渝北区某中学初2019级1班数学期末成绩情况的调查D.对全国公民知晓“社会主义核心价值观”内涵情况的调查6.二次函数y=x2的图象向左平移1个单位,再向下平移3个单位后,所得抛物线的函数表达式是()A.y=+3 B.y=+3C.y=﹣3 D.y=﹣37.中,,,,则的值是()A. B. C. D.8.为了解我县目前九年级学生对中考体育的重视程度,从全县5千多名九年级的学生中抽取200名学生作为样本,对其进行中考体育项目的测试,200名学生的体育平均成绩为40分则我县目前九年级学生中考体育水平大概在()A.40分 B.200分 C.5000 D.以上都有可能9.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大. D.当y增大时,BE·DF的值不变.10.一个菱形的边长为,面积为,则该菱形的两条对角线的长度之和为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,正方形ABCD的边长为,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则△DMN的面积=.12.如图,在正方形网格中,每个小正方形的边长都是1,的每个顶点都在格点上,则_____.13.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=.14.二次函数图象的对称轴是______________.15.一个质地均匀的小正方体,六个面分别标有数字“”“”“”“”“”“”,随机掷一次小正方体,朝上一面的数字是奇数的概率是_____.16.若点、在二次函数的图象上,则的值为________.17.如果3a=4b(a、b都不等于零),那么a+bb=_____18.对于任何实数,,,,我们都规定符号的意义是,按照这个规定请你计算:当时,的值为________.三、解答题(共66分)19.(10分)解一元二次方程:.20.(6分)如图,一次函数图象经过点,与轴交于点,且与正比例函数的图象交于点,点的横坐标是.请直接写出点的坐标(,);求该一次函数的解析式;求的面积.21.(6分)(1)3tan30°-tan45°+2sin60°(2)22.(8分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)23.(8分)如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0)、B(5,0),与y轴相交于点C(0,).(1)求该函数的表达式;(2)设E为对称轴上一点,连接AE、CE;①当AE+CE取得最小值时,点E的坐标为;②点P从点A出发,先以1个单位长度/的速度沿线段AE到达点E,再以2个单位长度的速度沿对称轴到达顶点D.当点P到达顶点D所用时间最短时,求出点E的坐标.24.(8分)如图,点是正方形边.上一点,连接,作于点,于点,连接.(1)求证:;(2)己知,四边形的面积为,求的值.25.(10分)如图,∠MON=60°,OF平分∠MON,点A在射线OM上,P,Q是射线ON上的两动点,点P在点Q的左侧,且PQ=OA,作线段OQ的垂直平分线,分别交OM,OF,ON于点D,B,C,连接AB,PB.(1)依题意补全图形;(2)判断线段AB,PB之间的数量关系,并证明;(3)连接AP,设,当P和Q两点都在射线ON上移动时,是否存在最小值?若存在,请直接写出的最小值;若不存在,请说明理由.26.(10分)如图,AB与CD相交于点O,△OBD∽△OAC,=,OB=6,S△AOC=50,求:(1)AO的长;(2)求S△BOD

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据圆周角定理以及圆内接四边形的性质即可解决问题;【详解】解:∵∠AOC=2∠B,∠AOC=160°,

∴∠B=80°,

∵∠ADC+∠B=180°,

∴∠ADC=100°,

故选:C.【点睛】本题考查圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识.2、A【分析】根据边形从一个顶点出发可引出条对角线,求出的值,再根据边形的内角和为,代入公式就可以求出内角和,根据多边形的外角和等于360,即可求解.【详解】∵多边形从一个顶点出发可引出4条对角线,

∴,

解得:,

∴内角和;任何多边形的外角和都等于360.故选:A.【点睛】本题考查了多边形的对角线,多边形的内角和及外角和定理,是需要熟记的内容,比较简单.求出多边形的边数是解题的关键.3、A【解析】∵抛物线y=﹣x2+bx+c经过点(﹣2,3),∴-4-2b+c=3,即c-2b=7,∴2c-4b-9=2(c-2b)-9=14-9=5.故选A.4、C【解析】由图象得,此二次函数过原点(0,0),

把点(0,0)代入函数解析式得a2-1=0,解得a=±1;

又因为此二次函数的开口向上,所以a>0;

所以a=1.

故选C.5、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进行判断.【详解】A、对某飞机上旅客随身携带易燃易爆危险物品情况的调查适合采用全面调查方式;B、对我国首艘国产“002型”航母各零部件质量情况的调查适合采用全面调查方式;C、对渝北区某中学初2019级1班数学期末成绩情况的调查适合采用全面调查方式;D、对全国公民知晓“社会主义核心价值观”内涵情况的调查适合采用抽样调查方式;故选:D.【点睛】本题主要考查抽样调查的意义和特点,理解抽样调查的意义是解题的关键.6、D【分析】先求出原抛物线的顶点坐标,再根据平移,得到新抛物线的顶点坐标,即可得到答案.【详解】∵原抛物线的顶点为(0,0),∴向左平移1个单位,再向下平移1个单位后,新抛物线的顶点为(﹣1,﹣1).∴新抛物线的解析式为:y=﹣1.故选:D.【点睛】本题主要考查二次函数图象的平移规律,通过平移得到新抛物线的顶点坐标,是解题的关键.7、D【分析】根据勾股定理求出BC的长度,再根据cos函数的定义求解,即可得出答案.【详解】∵AC=,AB=4,∠C=90°∴∴故答案选择D.【点睛】本题考查的是勾股定理和三角函数,比较简单,需要熟练掌握sin函数、cos函数和tan函数分别代表的意思.8、A【分析】平均数可以反映一组数据的一般情况、和平均水平,样本的平均数即可估算出总体的平均水平.【详解】∵200名学生的体育平均成绩为40分,∴我县目前九年级学生中考体育水平大概在40分,故选:A.【点睛】本题考查用样本平均数估计总体的平均数,平均数是描述数据集中位置的一个统计量,既可以用它来反映一组数据的一般情况、和平均水平,也可以用它进行不同组数据的比较,以看出组与组之间的差别.9、D【解析】试题分析:由图象可知,反比例函数图象经过(3,3),应用待定系数法可得该反比例函数关系式为,因此,当x=3时,y=3,点C与点M重合,即EC=EM,选项A错误;根据等腰直角三角形的性质,当x=3时,y=3,点C与点M重合时,EM=,当y=9时,,即EC=,所以,EC<EM,选项B错误;根据等腰直角三角形的性质,EC=,CF=,即EC·CF=,为定值,所以不论x如何变化,EC·CF的值不变,选项C错误;根据等腰直角三角形的性质,BE=x,DF=y,所以BE·DF=,为定值,所以不论y如何变化,BE·DF的值不变,选项D正确.故选D.考点:1.反比例函数的图象和性质;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.等腰直角三角形的性质;5.勾股定理.10、C【分析】如图,根据菱形的性质可得,,,再根据菱形的面积为,可得①,由边长结合勾股定理可得②,由①②两式利用完全平方公式的变形可求得,进行求得,即可求得答案.【详解】如图所示:四边形是菱形,,,,面积为,①菱形的边长为,②,由①②两式可得:,,,即该菱形的两条对角线的长度之和为,故选C.【点睛】本题考查了菱形的性质,菱形的面积,勾股定理等,熟练掌握相关知识是解题的关键.二、填空题(每小题3分,共24分)11、1.【分析】首先连接DF,由四边形ABCD是正方形,可得△BFN∽△DAN,又由E,F分别是AB,BC的中点,可得=2,△ADE≌△BAF(SAS),然后根据相似三角形的性质与勾股定理,可求得AN,MN的长,即可得MN:AF的值,再利用同高三角形的面积关系,求得△DMN的面积.【详解】连接DF,

∵四边形ABCD是正方形,

∴AD∥BC,AD=BC=,

∴△BFN∽△DAN,

∴,

∵F是BC的中点,

∴,

∴AN=2NF,

∴,

在Rt△ABF中,

∴,

∵E,F分别是AB,BC的中点,AD=AB=BC,

∴,

∵∠DAE=∠ABF=90°,

在△ADE与△BAF中,

∴△ADE≌△BAF(SAS),

∴∠AED=∠AFB,

∴∠AME=110°-∠BAF-∠AED=110°-∠BAF-∠AFB=90°.

∴,

∴,

∴.

又,

∴.

故答案为:1.12、2【分析】如图,取格点E,连接EC.利用勾股定理的逆定理证明∠AEC=90°即可解决问题.【详解】解:如图,取格点E,连接EC.易知AE=,∴AC2=AE2+EC2,∴∠AEC=90°,∴tan∠BAC=.【点睛】本题考查解直角三角形,勾股定理以及逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13、105°.【分析】连接OQ,由旋转的性质可知:△AQC≌△BOC,从而推出∠OAQ=90°,∠OCQ=90°,再根据特殊直角三角形边的关系,分别求出∠AQO与∠OQC的值,可求出结果.【详解】连接OQ,∵AC=BC,∠ACB=90°,∴∠BAC=∠B=45°,由旋转的性质可知:△AQC≌△BOC,∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,∴∠OQC=45°,∵BO:OA=1:,设BO=1,OA=,∴AQ=1,则tan∠AQO==,∴∠AQO=60°,∴∠AQC=105°.故答案为105°.14、直线【分析】根据二次函数的顶点式直接得出对称轴.【详解】二次函数图象的对称轴是x=1.故答案为:直线x=1【点睛】本题考查的是根据二次函数的顶点式求对称轴.15、.【解析】直接利用概率求法进而得出答案.【详解】一个质地均匀的小正方体,六个面分别标有数字“”“”“”“”“”“”,随机掷一次小正方体,朝上一面的数字是奇数的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确掌握概率公式是解题关键.16、-1【分析】利用抛物线的对称性得到点A和点B为抛物线上的对称点,根据二次函数的性质得到抛物线的对称轴为直线x=−2,从而得到m−(−2)=−2−(−3),然后解方程即可.【详解】∵点A(−3,n)、B(m,n),∴点A和点B为抛物线上的对称点,∵二次函数的图象的对称轴为直线x=−2,∴m−(−2)=−2−(−3),∴m=−1.故答案为:−1.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.17、7【解析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【详解】∵3a=4b(a、b都不等于零),∴设a=4x,则b=3x,那么a+ba故答案为:73【点睛】此题主要考查了比例的性质,正确表示出a,b的值是解题关键.18、1【分析】先解变形为,再根据,把转化为普通运算,然后把代入计算即可.【详解】∵,∴,∵,∴=(x+1)(x-1)-3x(x-2)=

x2-1-3x2+6x=-2x2+6x-1=-2(x2-3x)-1=-2×(-1)-1=1.故答案为1.【点睛】本题考查了信息迁移,整式的混合运算及添括号法则,三、解答题(共66分)19、【解析】用直配方法解方程即可.【详解】解:原方程可化为:,∴,解得:.20、(1);(2);(3)1【分析】(1)根据正比例函数即可得出答案;(2)根据点A和B的坐标,利用待定系数法求解即可;(3)先根据题(2)求出点C的坐标,从而可知OC的长,再利用三角形的面积公式即可得.【详解】(1)将代入正比例函数得,故点的坐标是;(2)设这个一次函数的解析式为把代入,得解方程组,得故这个一次函数的解析式为;(3)在中,令,得即点的坐标是,则的面积故的面积为1.【点睛】本题考查了一次函数的几何应用、利用待定系数法求一次函数的解析式,掌握一次函数的图象与性质是解题关键.21、(1);(2)【分析】(2)根据特殊角的三角函数值,代入求出即可.(2)根据特殊角的三角函数值,零指数幂求出每一部分的值,代入求出即可.【详解】(1)(2)【点睛】本题考查了实数的运算法则,同时也利用了特殊角的三角函数值、0指数幂的定义及负指数幂定义解决问题.22、通信塔CD的高度约为15.9cm.【解析】过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.【详解】过点A作AE⊥CD于E,则四边形ABDE是矩形,设CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在Rt△ABM中,BM=cm,∵AE=BD,∴,解得:x=+3,∴CD=CE+ED=+9≈15.9(cm),答:通信塔CD的高度约为15.9cm.【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.23、(1);(2)①(2,);②点E(2,).【分析】(1)抛物线的表达式为:y=a(x+1)(x﹣5)=a(x2﹣4x﹣5),故﹣5a=,解得:a=﹣,即可求解;(2)①点A关于函数对称轴的对称点为点B,连接CB交函数对称轴于点E,则点E为所求,即可求解;②t=AE+DE,t=AE+DE=AE+EH,当A、E、H共线时,t最小,即可求解.【详解】(1)抛物线的表达式为:y=a(x+1)(x﹣5)=a(x2﹣4x﹣5),故﹣5a=,解得:a=﹣,故抛物线的表达式为:;(2)①函数的对称轴为:x=2,点A关于函数对称轴的对称点为点B,连接CB交函数对称轴于点E,则点E为所求,由点B、C的坐标得,BC的表达式为:y=﹣x+,当x=2时,y=,故答案为:(2,);②t=AE+DE,过点D作直线DH,使∠EDH=30°,作HE⊥DH于点H,则HE=DE,t=AE+DE=AE+EH,当A、E、H共线时,t最小,则直线A(E)H的倾斜角为:30°,直线AH的表达式为:y=(x+1)当x=2时,y=,故点E(2,).【点睛】本题考查了二次函数的综合问题,掌握二次函数的性质以及解析式、对称的性质是解题的关键.24、(1)见解析;(2)【分析】(1)首先由正方形的性质得出BA=AD,∠BAD=90°,又由DE⊥AM于点E,BF⊥AM得出∠AFB=90°,∠DEA=90°,∠ABF=∠EAD,然后即可判定△ABF≌△DAE,即可得出BF=AE;(2)首先设AE=x,则BF=x,DE=AF=2,然后将四边形的面积转化为两个三角形的面积之和,列出方程,得出BF,然后利用勾股定理得出BE,即可得解.【详解】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DAE(AAS),∴BF=AE;(2)设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴=.【点睛】此题主要考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论