河南省郑州市桐柏一中学2022年数学九年级第一学期期末学业质量监测试题含解析_第1页
河南省郑州市桐柏一中学2022年数学九年级第一学期期末学业质量监测试题含解析_第2页
河南省郑州市桐柏一中学2022年数学九年级第一学期期末学业质量监测试题含解析_第3页
河南省郑州市桐柏一中学2022年数学九年级第一学期期末学业质量监测试题含解析_第4页
河南省郑州市桐柏一中学2022年数学九年级第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.sin45°的值等于()A.12 B.22 C.32.下列方程中,是关于的一元二次方程的是()A. B. C. D.3.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是()A. B. C. D.4.若△ABC∽△ADE,若AB=9,AC=6,AD=3,则EC的长是()A.2 B.3 C.4 D.55.已知关于x的一元二次方程有两个实数根,则k的取值范围是()A. B.且C.且 D.6.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最大值为()A.7 B.14 C.6 D.157.如图,矩形的边在x轴上,在轴上,点,把矩形绕点逆时针旋转,使点恰好落在边上的处,则点的对应点的坐标为()A. B. C. D.8.下列说法正确的是()A.为了了解长沙市中学生的睡眠情况,应该采用普查的方式B.某种彩票的中奖机会是1%,则买111张这种彩票一定会中奖C.若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则乙组数据比甲组数据稳定D.一组数据1,5,3,2,3,4,8的众数和中位数都是39.如图,点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,若OA:OA1=1:3,则五边形ABCDE和五边形A1B1C1D1E1的面积比是()A.1:2 B.1:3 C.1:4 D.1:910.点A(-2,1)关于原点对称的点A'的坐标是()A.(2,1) B.(-2,-1) C.(-1,2) D.(2,-1)二、填空题(每小题3分,共24分)11.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为.12.如图,圆形纸片⊙O半径为5,先在其内剪出一个最大正方形,再在剩余部分剪出4个最大的小正方形,则4个小正方形的面积和为_______.13.已知关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根,则这两个相等实数根的和为_____.14.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.15.如图,A,B,C是⊙O上三点,∠AOC=∠B,则∠B=_______度.16.已知抛物线y=x2+2kx﹣6与x轴有两个交点,且这两个交点分别在直线x=2的两侧,则k的取值范围是_____.17.如图所示,小明在探究活动“测旗杆高度”中,发现旗杆的影子恰好落在地面和教室的墙壁上,测得,,而且此时测得高的杆的影子长,则旗杆的高度约为__________.18.在Rt△ABC中,∠C=90°,若AC=3,AB=5,则cosB的值为__________.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠ACB90°,∠ABC的平分线BD交AC于点D.(1)求作⊙O,使得点O在边AB上,且⊙O经过B、D两点(要求尺规作图,保留作图痕迹,不写作法);(2)证明AC与⊙O相切.20.(6分)如图,抛物线与x轴相交于A,B两点,与y轴相交于点C.点D是直线AC上方抛物线上一点,过点D作y轴的平行线,与直线AC相交于点E.(1)求直线AC的解析式;(2)当线段DE的长度最大时,求点D的坐标.21.(6分)如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.22.(8分)已知抛物线与轴交于点.(1)求点的坐标和该抛物线的顶点坐标;(2)若该抛物线与轴交于两点,求的面积;(3)将该抛物线先向左平移个单位长度,再向上平移个单位长度,求平移后的抛物线的解析式(直接写出结果即可).23.(8分)已知有一个二次函数由的图像与x轴的交点为(-2,0),(4,0),形状与二次函数相同,且的图像顶点在函数的图像上(a,b为常数),则请用含有a的代数式表示b.24.(8分)现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)25.(10分)解方程:(1)(x+1)2﹣9=0(2)x2﹣4x﹣45=026.(10分)某游乐场试营业期间,每天运营成本为1000元.经统计发现,每天售出的门票张数(张)与门票售价(元/张)之间满足一次函数,设游乐场每天的利润为(元).(利润=票房收入-运营成本)(1)试求与之间的函数表达式.(2)游乐场将门票售价定为多少元/张时,每天获利最大?最大利润是多少元?

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据特殊角的三角函数值即可求解.【详解】sin45°=22故选B.【点睛】错因分析:容易题.失分的原因是没有掌握特殊角的三角函数值.2、C【解析】只有一个未知数且未知数的最高次数为2的整式方程为一元二次方程.【详解】解:A选项,缺少a≠0条件,不是一元二次方程;B选项,分母上有未知数,是分式方程,不是一元二次方程;C选项,经整理后得x2+x=0,是关于x的一元二次方程;D选项,经整理后是一元一次方程,不是一元二次方程;故选择C.【点睛】本题考查了一元二次方程的定义.3、D【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张,所以抽到偶数的概率是=,故选:D.【点睛】本题主要考查了随机事件的概率,随机事件A的概率P(A)事件A可能出现的结果数所有可能出现的结果数,灵活利用概率公式是解题的关键.4、C【分析】利用相似三角形的性质得,对应边的比相等,求出AE的长,EC=AC-AE,即可计算DE的长;【详解】∵△ABC∽△ADE,∴,∵AB=9,AC=6,AD=3,∴AE=2,即EC=AC-AE=6-2=4;故选C.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.5、C【分析】若一元二次方程有两个实数根,则根的判别式△=b24ac≥1,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为1.【详解】解:∵一元二次方程有两个实数根,∴,解得:,∵,∴k的取值范围是且;故选:C.【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.6、B【分析】根据“PA⊥PB,点A与点B关于原点O对称”可知AB=2OP,从而确定要使AB取得最大值,则OP需取得最大值,然后过点M作MQ⊥x轴于点Q,确定OP的最大值即可.【详解】∵PA⊥PB∴∠APB=90°∵点A与点B关于原点O对称,∴AO=BO∴AB=2OP若要使AB取得最大值,则OP需取得最大值,连接OM,交○M于点,当点P位于位置时,OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5∵∴当点P在的延长线于○M的交点上时,OP取最大值,∴OP的最大值为3+2×2=7∴AB的最大值为7×2=14故答案选B.【点睛】本题考查的是圆上动点与最值问题,能够找出最值所在的点是解题的关键.7、A【分析】作辅助线证明△∽△ON,列出比例式求出ON=,N=即可解题.【详解】解:过点作⊥x轴于M,过点作⊥x轴于N,由旋转可得,△∽△ON,∵OC=6,OA=10,∴ON::O=:OM:O=3:4:5,∴ON=,N=,∴的坐标为,故选A.【点睛】本题考查了相似三角形的性质,中等难度,做辅助线证明三角形相似是解题关键.8、D【分析】根据抽样调查、概率、方差、中位数与众数的概念判断即可.【详解】A、为了解长沙市中学生的睡眠情况,应该采用抽样调查的方式,不符合题意;B、某种彩票的中奖机会是1%,则买111张这种彩票可能会中奖,不符合题意;C、若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则甲组数据比乙组数据稳定,不符合题意;D、一组数据1,5,3,2,3,4,8的众数和中位数都是3,符合题意;故选:D.【点睛】本题考查统计的相关概念,关键在于熟记概念.9、D【分析】由点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,可得位似比为1:3,根据相似图形的面积比等于相似比的平方,即可求得答案.【详解】∵点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,∴五边形ABCDE和五边形A1B1C1D1E1的位似比为1:3,∴五边形ABCDE和五边形A1B1C1D1E1的面积比是1:1.故选:D.【点睛】此题考查了位似图形的性质.此题比较简单,注意相似图形的周长的比等于相似比,相似图形的面积比等于相似比的平方.10、D【解析】根据两个点关于原点对称时,它们的横纵坐标符号相反,即可求解.【详解】解:点A(-2,1)关于原点对称的点A'的坐标是(2,-1).

故选:D.【点睛】本题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.二、填空题(每小题3分,共24分)11、.【解析】试题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,∠BOD=∠COD=60°,所以,三角形OCD为等边三角形,所以,半圆O的半径为OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以阴影部分的面积为为S=--()=.考点:扇形的面积计算.12、16【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4个小正方形的面积和.【详解】解:如图,点A为上面小正方形边的中点,点B为小正方形与圆的交点,D为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD为等腰直角三角形,∵⊙O半径为5,根据垂径定理得:∴OD=CD==5,设小正方形的边长为x,则AB=,则在直角△OAB中,OA2+AB2=OB2,即,解得x=2,∴四个小正方形的面积和=.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.13、2【分析】根据根的判别式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根据韦达定理:即可.【详解】当关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根时,,即,解得b=﹣2a或b=2a(舍去),原方程可化为ax2﹣2ax+5a=0,则这两个相等实数根的和为.故答案为:2.【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。14、【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,OM=∵正六边形中心角为60°∴∠MON=120°∴扇形MON的弧长为:则r1=a同理:扇形DEF的弧长为:则r2=r1:r2=故答案为点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.15、1【分析】连结OB,可知△OAB和△OBC都是等腰三角形,∠ABC=∠A+∠C=∠AOC,四边形内角和360゜,可求∠B.【详解】如图,连结OB,∵OA=OB=OC,∴△OAB和△OBC都是等腰三角形,∴∠A=∠OBA,∠C=∠OBC,∴∠ABC=∠OBA+∠OBC=∠A+∠C,∴∠A+∠C=∠ABC=∠AOC∵∠A+∠ABC+∠C+∠AOC=360゜∴3∠ABC=360゜∴∠ABC=1゜即∠B=1゜.故答案为:1.【点睛】本题考查圆周角度数问题,要抓住半径相等构造两个等腰三角形,把问题转化为解∠B的方程是关键.16、【分析】由抛物线y=x2+2kx﹣6可得抛物线开口方向向上,根据抛物线与x轴有两个交点且这两个交点分别在直线x=2的两侧可得:当x=2时,抛物线在x轴下方,即y<1.【详解】解:∵y=x2+2kx﹣6与x轴有两个交点,两个交点分别在直线x=2的两侧,∴当x=2时,y<1.∴4+4k﹣6<1解得:k<;∴k的取值范围是k<,故答案为:k<.【点睛】本题主要考查二次函数图象性质,解决本题的关键是要熟练掌握二次函数图象的性质.17、1【分析】作BE⊥AC于E,可得矩形CDBE,利用同一时刻物高与影长的比一定得到AE的长度,加上CE的长度即为旗杆的高度【详解】解:作BE⊥AC于E,∵BD⊥CD于D,AC⊥CD于C,∴四边形CDBE为矩形,∴BE=CD=1m,CE=BD=2m,∵同一时刻物高与影长所组成的三角形相似,∴,即,解得AE=2(m),∴AC=AE+EC=2+2=1(m).故答案为:1.【点睛】本题考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.18、【分析】先根据勾股定理求的BC的长,再根据余弦的定义即可求得结果.【详解】由题意得则故答案为:点睛:勾股定理的应用是初中数学极为重要的知识,与各个知识点联系极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.三、解答题(共66分)19、(1)见解析;(2)见解析【分析】(1)作BD的垂直平分线交AB于O,再以O点为圆心,OB为半径作圆即可;(2)证明OD∥BC得到∠ODC=90°,然后根据切线的判定定理可判断AC为⊙O的切线.【详解】解:(1)如图,⊙O为所作;

(2)证明:连接OD,如图,

∵BD平分∠ABC,

∴∠CBD=∠ABD,

∵OB=OD,

∴∠OBD=∠ODB,

∴∠CBD=∠ODB,

∴OD∥BC,

∴∠ODA=∠ACB,

又∠ACB=90°,

∴∠ODA=90°,

即OD⊥AC,

∵点D是半径OD的外端点,

∴AC与⊙O相切.【点睛】本题考查了作图—复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定.20、(1)直线的解析式为;(2)当的长度最大时,点的坐标为.【分析】(1)根据题意,先求出点A和点C的坐标,然后利用待定系数法,即可求出答案;(2)根据题意,利用m表示DE的长度,然后根据二次函数的性质,即可求出点D的坐标.【详解】解(1)当时,.,.点的坐标是.当时,.点的坐标是.设直线的解析式为,,解得:.直线的解析式为:.(2)如图:设点的横坐标为.则点的坐标为,点的坐标为.所以.∵,∴当时,线段长度最大.将代入,得.∴当的长度最大时,点的坐标为.【点睛】本题考查的是抛物线与x轴的交点,一次函数的性质,掌握二次函数与一元二次方程的关系是解题的关键,解答时,注意待定系数法的灵活运用.21、(1)35°;(2)证明见解析.【分析】(1)由点E是△ABC的内心,∠BAC=70°,易得∠CAD=,进而得出∠CBD=∠CAD=35°;(2)由点E是△ABC的内心,可得E点为△ABC角平分线的交点,可得∠ABE=∠CBE,∠BAD=∠CAD,可推导出∠DBE=∠BED,可得DE=DB.【详解】(1)∵点E是△ABC的内心,∠BAC=70°,∴∠CAD=,∵,∴∠CBD=∠CAD=35°;(2)∵E是内心,∴∠ABE=∠CBE,∠BAD=∠CAD.∵∠CBD=∠CAD,∴∠CBD=∠BAD,∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,∴∠DBE=∠BED,∴DE=DB.【点睛】此题考查了圆的内心的性质以及角平分线的性质等知识.此题综合性较强,注意数形结合思想的应用.22、(1)(0,5);;(2)15;(3)【分析】(1)令x=0即可得出点C的纵坐标,从而得出点C的坐标;利用配方法将抛物线表达式进行变形即可得出顶点坐标(2)求出A,B两点的坐标,进而求出A与B的距离,由C点坐标可知OC的长,即可得出答案(3)根据平移的规律结合原抛物线表达式即可得出答案.【详解】解:(Ⅰ)当时,,故点,则抛物线的表达式为:,故顶点坐标为:;(2)令,解得:或,则,则;(3)∵∴平移后的抛物线表达式为:【点睛】本题考查的知识点是二次函数图象与几何变换以及二次函数的性质,此题较为基础,易于掌握.23、或【解析】根据图象与x轴两交点确定对称轴,再根据图象顶点在函数的图像上可得顶点坐标,设顶点式求抛物线的解析式.【详解】解:∵y1图象与x轴的交点坐标为(-2,0),(4,0),可得图象对称轴为直线x=1,∵y1图象顶点在函数的图象上,∴当x=1时,y=2+b,∴y1图象顶点坐标为(1,2+b)∵y1图象与形状相同,∴设y1=a(x-1)2+2+b,或y1=-a(x-1)2+2+b,将(-2,0)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论