![河南省驻马店市遂平县2022年九年级数学第一学期期末检测模拟试题含解析_第1页](http://file4.renrendoc.com/view14/M03/13/27/wKhkGWaYWiGACrpUAAHpbr7iQxw651.jpg)
![河南省驻马店市遂平县2022年九年级数学第一学期期末检测模拟试题含解析_第2页](http://file4.renrendoc.com/view14/M03/13/27/wKhkGWaYWiGACrpUAAHpbr7iQxw6512.jpg)
![河南省驻马店市遂平县2022年九年级数学第一学期期末检测模拟试题含解析_第3页](http://file4.renrendoc.com/view14/M03/13/27/wKhkGWaYWiGACrpUAAHpbr7iQxw6513.jpg)
![河南省驻马店市遂平县2022年九年级数学第一学期期末检测模拟试题含解析_第4页](http://file4.renrendoc.com/view14/M03/13/27/wKhkGWaYWiGACrpUAAHpbr7iQxw6514.jpg)
![河南省驻马店市遂平县2022年九年级数学第一学期期末检测模拟试题含解析_第5页](http://file4.renrendoc.com/view14/M03/13/27/wKhkGWaYWiGACrpUAAHpbr7iQxw6515.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列计算正确的是()A. B. C.÷ D.2.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多 B.白球比红球多 C.红球,白球一样多 D.无法估计3.如图,AB是⊙O的直径,点C,D在⊙O上.若∠ABD=55°,则∠BCD的度数为()A.25° B.30° C.35° D.40°4.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A. B. C. D.5.己知a、b、c均不为0,且,若,则k=()A.-1 B.0 C.2 D.36.如图,在平面直角坐标系中,直线l的表达式是,它与两坐标轴分别交于C、D两点,且∠OCD=60º,设点A的坐标为(m,0),若以A为圆心,2为半径的⊙A与直线l相交于M、N两点,当MN=时,m的值为()A. B. C.或 D.或7.已知x=1是一元二次方程mx2–2=0的一个解,则m的值是().A. B.2 C. D.1或28.如图,在正方形中,为边上的点,连结,将绕点逆时针方向旋转得到,连结,若,则的度数为()A. B. C. D.9.是关于的一元一次方程的解,则()A. B. C.4 D.10.如果用配方法解方程x2-2x-3=0,那么原方程应变形为(A.(x-1)2=4 B.(x+1)2=4二、填空题(每小题3分,共24分)11.如图,在四边形ABCD中,∠BAD=∠CDA=90°,AB=1,CD=2,过A,B,D三点的⊙O分别交BC,CD于点E,M,下列结论:①DM=CM;②弧AB=弧EM;③⊙O的直径为2;④AE=AD.其中正确的结论有______(填序号).12.已知反比例函数的图象经过点P(a+1,4),则a=_________________.13.如图,点A,B是双曲线上的点,分别过点A,B作轴和轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为____________.14.如图,小颖周末晚上陪父母在斜江绿道上散步,她由路灯下A处前进3米到达B处时,测得影子BC长的1米,已知小颖的身高1.5米,她若继续往前走3米到达D处,此时影子DE长为____米.15.抛物线y=2(x﹣1)2﹣5的顶点坐标是_____.16.方程(x+1)(x﹣2)=5化成一般形式是_____.17.布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是__________.18.小明制作了一张如图所示的贺卡.贺卡的宽为,长为,左侧图片的长比宽多.若,则右侧留言部分的最大面积为_________.三、解答题(共66分)19.(10分)某企业设计了一款工艺品,每件成本40元,出于营销考虑,要求每件售价不得低于40元,但物价部门要求每件售价不得高于60元.据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每涨1元,每天就少售出2件,设单价上涨元.(1)求当为多少时每天的利润是1350元?(2)设每天的销售利润为,求销售单价为多少元时,每天利润最大?最大利润是多少?20.(6分)如图,△ABC中,AB=AC=2,∠BAC=120°,D为BC边上的点,将DA绕D点逆时针旋转120°得到DE.(1)如图1,若AD=DC,则BE的长为,BE2+CD2与AD2的数量关系为;(2)如图2,点D为BC边山任意一点,线段BE、CD、AD是否依然满足(1)中的关系,试证明;(3)M为线段BC上的点,BM=1,经过B、E、D三点的圆最小时,记D点为D1,当D点从D1处运动到M处时,E点经过的路径长为.21.(6分)如图,一位篮球运动员在离篮圈水平距离4处跳起投篮,球运行的高度()与运行的水平距离()满足解析式,当球运行的水平距离为1.5时,球离地面高度为2.2,球在空中达到最大高度后,准确落入篮圈内.已知篮圈中心离地面距离为2.35.(1)当球运行的水平距离为多少时,达到最大高度?最大高度为多少?(2)若该运动员身高1.8,这次跳投时,球在他头顶上方3.25处出手,问球出手时,他跳离地面多高?22.(8分)(1)如图1,在⊙O中,弦AB与CD相交于点F,∠BCD=68°,∠CFA=108°,求∠ADC的度数.(2)如图2,在正方形ABCD中,点E是CD上一点(DE>CE),连接AE,并过点E作AE的垂线交BC于点F,若AB=9,BF=7,求DE长.23.(8分)某商场将进货单价为30元的商品以每个40元的价格售出时,平均每月能售出600个,调查表明:这种商品的售价每上涨1元,其销售量就减少10个.(1)为了使平均每月有10000元的销售利润且尽快售出,这种商品的售价应定为每个多少元?(2)当该商品的售价为每个多少元时,商场销售该商品的平均月利润最大?最大利润是多少?24.(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(Ⅰ)若花园的面积是252m2,求AB的长;(Ⅱ)当AB的长是多少时,花园面积最大?最大面积是多少?25.(10分)如图,抛物线y=ax2﹣x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P在BC下方的抛物线上运动.(1)求该抛物线的解析式;(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.26.(10分)据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈西尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”大意如下:如图,今有山位于树的西面.山高为未知数,山与树相距里,树高丈尺,人站在离树里的处,观察到树梢恰好与山峰处在同一斜线上,人眼离地尺,问山AB的高约为多少丈?(丈尺,结果精确到个位)
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据完全平方公式对D进行判断.【详解】A、原式=2﹣,所以A选项错误;B、3与不能合并,所以B选项错误;C、原式==2,所以C选项正确;D、原式=3+4+4=7+4,所以D选项错误.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2、A【解析】根据题意可得5位同学摸到红球的频率为,由此可得盒子里的红球比白球多.故选A.3、C【详解】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=55°,∴∠BAD=90°﹣55°=35°,∴∠BCD=∠BAD=35°.故选C.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.4、B【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【详解】解:设扇形的半径为r.由题意:=6π,∴r=9,∴S扇形==27π,故选B.【点睛】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.5、D【解析】分别用含有k的代数式表示出2b+c,2c+a,2a+b,再相加即可求解.【详解】∵∴,,三式相加得,∵∴k=3.故选D.【点睛】本题考查了比的性质,解题的关键是求得2b+c=ak,2c+a=bk,2a+b=ck.6、C【分析】根据题意先求得、的长,分两种情况讨论:①当点在直线l的左侧时,利用勾股定理求得,利用锐角三角函数求得,即可求得答案;②当点在直线l的右侧时,同理可求得答案.【详解】令,则,点D的坐标为,∵∠OCD=60º,∴,分两种情况讨论:①当点在直线l的左侧时:如图,过A作AG⊥CD于G,∵,MN=,∴,∴,在中,∠ACG=60º,∴,∴,∴,②当点在直线l的右侧时:如图,过A作AG⊥直线l于G,∵,MN=,∴,∴,在中,∠ACG=60º,∴,∴,∴,综上:m的值为:或.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,锐角三角函数,分类讨论、构建合适的辅助线是解题的关键.7、B【分析】根据一元二次方程的解的定义,把x=1代入mx2–2=0可得关于m的一元一次方程,解方程求出m的值即可得答案.【详解】∵x=1是一元二次方程mx2–2=0的一个解,∴m-2=0,解得:m=2,故选:B.【点睛】本题考查一元二次方程的解的定义,把求未知系数的问题转化为方程求解的问题,能够使方程左右两边相等的未知数的值叫做方程的解;熟练掌握定义是解题关键.8、D【分析】根据旋转的性质可知,然后得出,最后利用即可求解.【详解】∵绕点逆时针方向旋转得到,∴,,∴.故选:D.【点睛】本题主要考查旋转的性质及等腰直角三角形的性质,掌握旋转的性质及等腰直角三角形的性质是解题的关键.9、A【分析】先把x=1代入方程得a+2b=-1,然后利用整体代入的方法计算2a+4b的值【详解】将x=1代入方程x2+ax+2b=0,得a+2b=-1,2a+4b=2(a+2b)=2×(-1)=-2.故选A.【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键10、A【解析】先移项,再配方,即方程两边同时加上一次项系数一般的平方.【详解】解:移项得,x2−2x=3,配方得,x2−2x+1=4,即(x−1)2=4,故选:A.【点睛】本题考查了用配方法解一元二次方程,掌握配方法的步骤是解题的关键.二、填空题(每小题3分,共24分)11、①②④【分析】连接BD,BM,AM,EM,DE,根据圆周角定理的推论可判定四边形ADMB是矩形,进一步可判断①;在①的基础上可判定四边形AMCB是平行四边形,进而得BE∥AM,即可判断②;易证∠AEM=∠ADM=90º,DM=EM,再利用角的关系可得∠ADE=∠AED,继而可判断④;由题设条件求不出⊙O的直径,故可判断③.【详解】解:连接BD,BM,AM,EM,DE,∵∠BAD=90°,∴BD为圆的直径,∴∠BMD=90°,∴∠BAD=∠CDA=∠BMD=90°,∴四边形ADMB是矩形,∴AB=DM=1,又∵CD=2,∴CM=1,∴DM=CM,故①正确;∵AB∥MC,AB=MC,∴四边形AMCB是平行四边形,∴BE∥AM,∴,故②正确;∵,∴AB=EM=1,∴DM=EM,∴∠DEM=∠EDM,∵∠ADM=90º,∴AM是直径,∴∠AEM=∠ADM=90º,∴∠ADE=∠AED,∴AD=AE,故④正确;由题设条件求不出⊙O的直径,所以③错误;故答案为:①②④.【点睛】本题是圆的综合题,主要考查了圆周角定理及其推论、圆心角、弦及弧之间的关系、等腰三角形的判定、矩形的判定与性质以及平行四边形的判定与性质等知识,熟练掌握有关性质及定理是解本题的关键.12、-3【分析】直接将点P(a+1,4)代入求出a即可.【详解】直接将点P(a+1,4)代入,则,解得a=-3.【点睛】本题主要考查反比例函数图象上点的坐标特征,熟练掌握反比例函数知识和计算准确性是解决本题的关键,难度较小.13、1.【解析】试题分析:∵点A、B是双曲线上的点,∴S矩形ACOG=S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ACDF+S矩形BDGE=6+6﹣2﹣2=1,故答案为1.考点:反比例函数系数k的几何意义.14、2【分析】根据题意可知,本题考查相似三角形性质,根据中心投影的特点和规律以及相似三角形性质,运用相似三角形对应边成比例进行求解.【详解】解:根据题意可知当小颖在BG处时,∴,即∴AP=6当小颖在DH处时,∴,即∴∴DE=2故答案为:2【点睛】本题考查了中心投影的特点和规律以及相似三角形性质的运用,解题关键是运用相似三角形对应边相等.15、(1,﹣5)【分析】根据二次函数的顶点式即可求解.【详解】解:抛物线y=2(x﹣1)2﹣5的顶点坐标是(1,﹣5).故答案为(1,﹣5).【点睛】本题考查了顶点式对应的顶点坐标,顶点式的理解是解题的关键16、x2﹣x﹣7=1.【分析】一元二次方程,b,c是常数且的a、b、c分别是二次项系数、一次项系数、常数项.【详解】解:方程(x+1)(x﹣2)=5化成一般形式是x2﹣x﹣7=1,故答案为:x2﹣x﹣7=1.【点睛】本题考查了一元二次方程的一般形式:,b,c是常数且a≠1)特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.在一般形式中叫二次项,bx叫一次项,是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.17、【分析】直接根据概率公式求解.【详解】解:随机摸出一个球是红色的概率=.
故答案为:.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18、320【分析】先求出右侧留言部分的长,再根据矩形的面积公式得出面积与x的函数解析式,利用二次函数的图像与性质判断即可得出答案.【详解】根据题意可得,右侧留言部分的长为(36-x)cm∴右侧留言部分的面积又14≤x≤16∴当x=16时,面积最大(故答案为320.【点睛】本题考查的是二次函数的实际应用,比较简单,解题关键是根据题意写出面积的函数表达式.三、解答题(共66分)19、(1)时,每天的利润是1350元;(2)单价为60元时,每天利润最大,最大利润是1600元【分析】(1)根据每天的利润=单件的利润×销售数量列出方程,然后解方程即可;(2)根据每天的利润=单件的利润×销售数量表示出每天的销售利润,再利用二次函数的性质求最大值即可.【详解】(1)由题意得,即,解得:,∵物价部门要求每件不得高于60元,∴,即时每天的利润是1350元;(2)由题意得:,∵抛物线开口向下,对称轴为,在对称轴左侧,随的增大而增大,且,∴当时,(元),当时,售价为(元),∴单价为60元时,每天利润最大,最大利润是1600元.【点睛】本题主要考查一元二次方程和二次函数的应用,掌握一元二次方程的解法和二次函数的性质是解题的关键.20、(1)1;BE1+CD1=4AD1;(1)能满足(1)中的结论,见解析;(3)1【分析】(1)依据旋转性质可得:DE=DA=CD,∠BDE=∠ADB=60°,再证明:△BDE≌△BDA,利用勾股定理可得结论;(1)将△ACD绕点A顺时针旋转110°得到△ABD′,再证明:∠D′BE=∠D′AE=90°,利用勾股定理即可证明结论仍然成立;(3)从(1)中发现:∠CBE=30°,即:点D运动路径是线段;分别求出点D位于D1时和点D运动到M时,对应的BE长度即可得到结论.【详解】解:(1)如图1,∵AB=AC,∠BAC=110°,∴∠ABC=∠ACB=30°,∵AD=DC∴∠CAD=∠ACB=30°,∠ADB=∠CAD+∠ACB=60°,∴∠BAD=90°,由旋转得:DE=DA=CD,∠BDE=∠ADB=60°∴△BDE≌△BDA(SAS)∴∠BED=∠BAD=90°,BE=AB=∴BE1+CD1=BE1+DE1=BD1∵=cos∠ADB=cos60°=∴BD=1AD∴BE1+CD1=4AD1;故答案为:;BE1+CD1=4AD1;(1)能满足(1)中的结论.如图1,将△ACD绕点A顺时针旋转110°得到△ABD′,使AC与AB重合,∵∠DAD′=110°,∠BAD′=∠CAD,∠ABD′=∠ACB=30°,AD′=AD=DE,∠DAE=∠AED=30°,BD′=CD,∠AD′B=∠ADC∴∠D′AE=90°∵∠ADB+∠ADC=180°∴∠ADB+∠AD′B=180°∴A、D、B、D′四点共圆,同理可证:A、B、E、D四点共圆,A、E、B、D′四点共圆;∴∠D′BE=90°∴BE1+BD′1=D′E1∵在△AD′E中,∠AED′=30°,∠EAD′=90°∴D′E=1AD′=1AD∴BE1+BD′1=(1AD)1=4AD1∴BE1+CD1=4AD1.(3)由(1)知:经过B、E、D三点的圆必定经过D′、A,且该圆以D′E为直径,该圆最小即D′E最小,∵D′E=1AD∴当AD最小时,经过B、E、D三点的圆最小,此时,AD⊥BC如图3,过A作AD1⊥BC于D1,∵∠ABC=30°∴BD1=AB•cos∠ABC=cos30°=3,AD1=∴D1M=BD1﹣BM=3﹣1=1由(1)知:在D运动过程中,∠CBE=30°,∴点D运动路径是线段;当点D位于D1时,由(1)中结论得:,∴BE1=当点D运动到M时,易求得:BE1=∴E点经过的路径长=BE1+BE1=1故答案为:1.【点睛】本题考查的是圆的综合,综合性很强,难度系数较大,运用到了全等和勾股定理等相关知识需要熟练掌握相关基础知识.21、(1)当球运行的水平距离为时,达到最大高度为;(2)球出手时,他跳离地面3.2.【分析】(1)根据待定系数法,即可求解;(2)令时,则,进而即可求出答案.【详解】(1)依题意得:抛物线经过点和,∴,解得:,∴,∴当球运行的水平距离为时,达到最大高度为;(2)∵时,,∴,即球出手时,他跳离地面3.2.【点睛】本题主要考查二次函数的实际应用,掌握二次函数的图象和性质,是解题的关键.22、(1)40°;(2)1.【分析】(1)由∠BCD=18°,∠CFA=108°,利用三角形外角的性质,即可求得∠B的度数,然后由圆周角定理,求得答案;(2)由正方形的性质和已知条件证明△ADE∽△ECF,根据相似三角形的性质可知:,设DE=x,则EC=9﹣x,代入计算求出x的值即可.【详解】(1)∵∠BCD=18°,∠CFA=108°,∴∠B=∠CFA﹣∠BCD=108°﹣18°=40°,∴∠ADC=∠B=40°.(2)解:∵四边形ABCD是正方形,∴CD=AD=BC=AB=9,∠D=∠C=90°,∴CF=BC﹣BF=2,在Rt△ADE中,∠DAE+∠AED=90°,∵AE⊥EF于E,∴∠AED+∠FEC=90°,∴∠DAE=∠FEC,∴△ADE∽△ECF,∴,设DE=x,则EC=9﹣x,∴,解得x1=3,x2=1,∵DE>CE,∴DE=1.【点睛】此题考查三角形的外角的性质,圆周角定理,正方形的性质,三角形相似的判定及性质.23、(1)50元;(2)该商品的售价为每个65元时,商场销售该商品的平均月利润最大,最大利润是12250元.【分析】(1)设该商品的售价是每个元,根据利润=每个的利润×销售量,即可列出关于x的方程,解方程即可求出结果;(2)设该商品的售价为每个元,利润为y元,根据利润=每个的利润×销售量即可得出y关于x的函数关系式,然后利用二次函数的性质解答即可.【详解】解:(1)设该商品的售价是每个元,根据题意,得:,解之得:,(不合题意,舍去).答:为了尽快售出,这种商品的售价应定为每个50元;(2)设该商品的售价为每个元,利润为y元,则,∴当时,利润最大,最大利润是12250元.答:该商品的售价为每个65元时,商场销售该商品的平均月利润最大,最大利润是12250元.【点睛】本题是一元二次方程和二次函数的应用题,属于常考题型,熟练掌握一元二次方程的解法和二次函数的性质是解题关键.24、(Ⅰ)13m或19m;(Ⅱ)当AB=16时,S最大,最大值为:1.【分析】(Ⅰ)根据题意得出长×宽=252列出方程,进一步解方程得出答案即可;(Ⅱ)设花园的面积为S,根据矩形的面积公式得到S=x(28-x)=-+28x=–+196,于是得到结果.【详解】解:(Ⅰ)∵AB=xm,则BC=(32﹣x)m,∴x(32﹣x)=252,解得:x1=13,x2=19,答:x的值为13m或19m;(Ⅱ)设花园的面积为S,由题意得:S=x(32﹣x)=﹣x2+32x=﹣(x﹣16)2+1,∵a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 特许加盟合同
- 2025年游戏授权合同解除协议
- 汽车美容店租赁合同
- 2025年彩票销售担保合同
- 2025年电力供应合同解除通知
- 城市污水处理施工合同
- 2025年小米广告合同
- 教育培训销售居间合同范本
- 2025年度消防安全管理解除合同模板
- 仓储物流居间代理合同样本
- 高二语文早读材料积累(1-20周)课件159张
- 规划收费标准
- 读《教师成长力-专业成长图谱》有感
- 自动化仪表工程施工及质量验收规范
- 邵阳市职工劳动能力鉴定表
- 胎膜早破的护理PPT
- GB/T 308.1-2013滚动轴承球第1部分:钢球
- 新员工入场安全教育培训课件
- 2023机械工程师考试试题及答案
- 精选装饰工程室内拆除专项施工方案
- 2022年二年级生命安全教育教案
评论
0/150
提交评论