河南省周口一中学2022年九年级数学第一学期期末统考试题含解析_第1页
河南省周口一中学2022年九年级数学第一学期期末统考试题含解析_第2页
河南省周口一中学2022年九年级数学第一学期期末统考试题含解析_第3页
河南省周口一中学2022年九年级数学第一学期期末统考试题含解析_第4页
河南省周口一中学2022年九年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若关于x的一元二次方程x2﹣2x+a﹣1=0没有实数根,则a的取值范围是()A.a<2 B.a>2 C.a<﹣2 D.a>﹣22.在一个不透明的盒子中装有2个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个白球的概率是,则黄球的个数为()A.2 B.3 C.4 D.63.如图在正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A. B. C. D.4.如图,在中,,于点,,,则的值为()A.4 B. C. D.75.下列说法错误的是A.必然事件发生的概率为 B.不可能事件发生的概率为C.有机事件发生的概率大于等于、小于等于 D.概率很小的事件不可能发生6.如图,嘉淇一家驾车从地出发,沿着北偏东的方向行驶,到达地后沿着南偏东的方向行驶来到地,且地恰好位于地正东方向上,则下列说法正确的是()A.地在地的北偏西方向上 B.地在地的南偏西方向上C. D.7.用配方法解方程x2+4x+1=0时,原方程应变形为()A.(x+2)2=3 B.(x﹣2)2=3 C.(x+2)2=5 D.(x﹣2)2=58.如图,,两条直线与三条平行线分别交于点和.已知,则的值为()A. B. C. D.9.已知分式的值为0,则的值是().A. B. C. D.10.已知2x=3y(x≠0,y≠0),则下面结论成立的是()A. B. C. D.11.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为().A.-1或2 B.-1或1C.1或2 D.-1或2或112.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是10二、填空题(每题4分,共24分)13.方程的根是___________.14.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为,则袋中共有小球_____只.15.已知反比例函数的图像上有两点M,N,且,,那么与之间的大小关系是_____________.16.计算:______.17.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.18.分别写有数字0,|-2|,-4,,-5的五张卡片,除数字不同外其它均相同,从中任抽一张,那么抽到非负数的概率是_________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=1.(1)求反比例函数的解析式;(2)求cos∠OAB的值;(1)求经过C、D两点的一次函数解析式.20.(8分)如图,点A、B、C、D是⊙O上的四个点,AD是⊙O的直径,过点C的切线与AB的延长线垂直于点E,连接AC、BD相交于点F.(1)求证:AC平分∠BAD;(2)若⊙O的半径为,AC=6,求DF的长.21.(8分)某小区在绿化工程中有一块长为20m,宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为102m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.22.(10分)有两个不透明的袋子,甲袋子里装有标有两个数字的张卡片,乙袋子里装有标有三个数字的张卡片,两个袋子里的卡片除标有的数字不同外,其大小质地完全相同.(1)从乙袋里任意抽出一张卡片,抽到标有数字的概率为.(2)求从甲、乙两个袋子里各抽一张卡片,抽到标有两个数字的卡片的概率.23.(10分)如图,C是直径AB延长线上的一点,CD为⊙O的切线,若∠C=20°,求∠A的度数.24.(10分)某校八年级学生在一起射击训练中,随机抽取10名学生的成绩如下表,回答问题:环数6789人数152(1)填空:_______;(2)10名学生的射击成绩的众数是_______环,中位数是_______环;(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有_______名是优秀射手.25.(12分)随着私家车的增多,“停车难”成了很多小区的棘手问题.某小区为解决这个问题,拟建造一个地下停车库.如图是该地下停车库坡道入口的设计示意图,其中,入口处斜坡的坡角为,水平线.根据规定,地下停车库坡道入口上方要张贴限高标志,以提醒驾驶员所驾车辆能否安全驶入.请求出限制高度为多少米,(结果精确到,参考数据:,,).26.图中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.线段和的端点均在格点上.(1)在图中画出以为一边的,点在格点上,使的面积为4,且的一个角的正切值是;(2)在图中画出以为顶角的等腰(非直角三角形),点在格点上.请你直接写出的面积.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据题意得根的判别式,即可得出关于的一元一次不等式,解之即可得出结论.【详解】∵,,,由题意可知:,∴a>2,故选:B.【点睛】本题考查了一元二次方程(a≠0)的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.2、C【解析】试题分析:设黄球的个数为x个,根据题意得:=,解得:x=1,经检验:x=1是原分式方程的解;∴黄球的个数为1.故选C.考点:概率公式.3、C【分析】可利用正方形的边把对应的线段表示出来,利用一角相等且夹边对应成比例两个三角形相似,根据各个选项条件筛选即可.【详解】解:根据勾股定理,AC=,BC=,AB=所以,,,,则+=所以,利用勾股定理逆定理得△ABC是直角三角形

所以,=A.不存在直角,所以不与△ABC相似;B.两直角边比(较长的直角边:较短的直角边)=≠2,所以不与△ABC相似;C.选项中图形是直角三角形,且两直角边比(较长的直角边:较短的直角边)=2,故C中图形与所给图形的三角形相似.D.不存在直角,所以不与△ABC相似.

故选:C.【点睛】此题考查了勾股定理在直角三角形中的运用,及判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键.4、B【分析】利用和可知,然后分别在和中利用求出BD和CD的长度,最后利用BC=BD+CD即可得出答案.【详解】∵∴∵∴在中∵,∴在中∵,∴∴故选B【点睛】本题主要考查解直角三角形,掌握锐角三角函数的意义是解题的关键.5、D【分析】利用概率的意义分别回答即可得到答案.概率的意义:必然事件就是一定发生的事件,概率是1;不可能发生的事件就是一定不发生的事件,概率是0;随机事件是可能发生也可能不发生的事件,概率>0且<1;不确定事件就是随机事件.【详解】解:A、必然发生的事件发生的概率为1,正确;

B、不可能发生的事件发生的概率为0,正确;

C、随机事件发生的概率大于0且小于1,正确;

D、概率很小的事件也有可能发生,故错误,

故选D.【点睛】本题考查了概率的意义及随机事件的知识,解题的关键是了解概率的意义.6、C【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.【详解】解:如图所示,

由题意可知,∠4=50°,

∴∠5=∠4=50°,即地在地的北偏西50°方向上,故A错误;

∵∠1=∠2=60°,

∴地在地的南偏西60°方向上,故B错误;

∵∠1=∠2=60°,

∴∠BAC=30°,

∴,故C正确;

∵∠6=90°−∠5=40°,即∠ACB=40°,故D错误.

故选C.【点睛】本题考查的是方向角,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.7、A【分析】先把常数项移到方程右侧,然后配一次项系数一半的平方即可求解.【详解】x2+4x=﹣1,x2+4x+4=3,(x+2)2=3,故选:A.【点睛】本题考查了解一元二次方程-配方法,掌握在二次项系数为1的前提下,配一次项系数一半的平方是关键.8、C【分析】由得设可得答案.【详解】解:,,设则故选C.【点睛】本题考查的是平行线分线段成比例,比例线段,掌握这两个知识点是解题的关键.9、D【分析】分析已知和所求,根据分式值为0的条件为:分子为0而分母不为0,不难得到=0且≠0;根据ab=0,a=0或b=0,即可解出x的值,再根据≠0,即可得到x的取值范围,由此即得答案.【详解】∵的值为0∴=0且≠0.解得:x=3.故选:D.【点睛】考核知识点:分式值为0.理解分式值为0的条件是关键.10、D【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,B.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,C.由内项之积等于外项之积,得x:y=3:2,即,故该选项不符合题意,D.由内项之积等于外项之积,得2:y=3:x,即,故D符合题意;故选:D.【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.11、D【解析】当该函数是一次函数时,与x轴必有一个交点,此时a-1=0,即a=1.当该函数是二次函数时,由图象与x轴只有一个交点可知Δ=(-4)2-4(a-1)×2a=0,解得a1=-1,a2=2.综上所述,a=1或-1或2.故选D.12、B【解析】选项A,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确;选项C,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;选项D,一组数据1,2,3,4,5的平均数=(1+2+3+4+5)=3,方差=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此选项错误.故答案选B.二、填空题(每题4分,共24分)13、,.【解析】试题分析:,∴,∴,.故答案为,.考点:解一元二次方程-因式分解法.14、1.【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x=1,经检验,x=1是原方程的解,所以袋中共有小球1只.故答案为1.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用.15、【分析】根据反比例函数特征即可解题。【详解】∵∴∵,∴,∴故答案为【点睛】本题考查反比例函数上点的坐标特征,注意反比例函数是分别在各自象限内存在单调性。16、【分析】根据特殊角三角函数值和二次根式化简整理,合并同类二次根式即可求解.【详解】解:.故答案为:【点睛】本题考查了特殊角的三角函数值和二次根式的计算,熟知特殊角的三角函数值是解题关键.17、15π.【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.18、【分析】根据概率的求解公式,首先弄清非负数卡片有3张,共有5张卡片,即可算出概率.【详解】由题意,得数字是非负数的卡片有0,|-2|,,共3张,则抽到非负数的概率是,故答案为:.【点睛】此题主要考查概率的求解,熟练掌握,即可解题.三、解答题(共78分)19、(1);(2);(1).【解析】试题分析:(1)设点D的坐标为(2,m)(m>0),则点A的坐标为(2,1+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,通过解直角三角形即可得出结论;(1)由m的值,可找出点C、D的坐标,设出过点C、D的一次函数的解析式为y=ax+b,由点C、D的坐标利用待定系数法即可得出结论.试题解析:(1)设点D的坐标为(2,m)(m>0),则点A的坐标为(2,1+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数的函数图象上,∴,解得:,∴反比例函数的解析式为.(2)∵m=1,∴点A的坐标为(2,2),∴OB=2,AB=2.在Rt△ABO中,OB=2,AB=2,∠ABO=90°,∴OA==,cos∠OAB==.(1))∵m=1,∴点C的坐标为(2,2),点D的坐标为(2,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:,∴经过C、D两点的一次函数解析式为.考点:反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征.20、(1)证明见解析;(2).【分析】(1)连接OC,先证明OC∥AE,从而得∠OCA=∠EAC,再利用OA=OC得∠OAC=∠OCA,等量代换即可证得答案;(2)设OC交BD于点G,连接DC,先证明△ACD∽△AEC,从而利用相似三角形的性质解得,再利用=cos∠FDC,代入相关线段的长可求得DF.【详解】(1)证明:如图,连接OC∵过点C的切线与AB的延长线垂直于点E,∴OC⊥CE,CE⊥AE∴OC∥AE∴∠OCA=∠EAC∵OA=OC∴∠OAC=∠OCA∴∠OAC=∠EAC,即AC平分∠BAD;(2)如图,设OC交BD于点G,连接DC∵AD为直径∴∠ACD=90°,∠ABD=90°∵CE⊥AE∴DB∥CE∵OC⊥CE∴OC⊥BD∴DG=BG∵∠OAC=∠EAC,∠ACD=90°=∠E∴△ACD∽△AEC∴∵⊙O的半径为,AC=6∴AD=7,∴∴易得四边形BECG为矩形∴DG=BG=∵=cos∠FDC∴解得:∴DF的长为.【点睛】本题考查相似三角形的性质,借助辅助线,判定△ACD∽△AEC,再根据相似三角形的性质求解.21、人行通道的宽度为1米.【分析】设人行通道的宽度为x米,根据矩形绿地的面积和为102平方米,列出关于x的一元二次方程,求解即可.【详解】设人行通道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=102,解得:x1=1,x2=(不合题意,舍去).答:人行通道的宽度为1米.【点睛】本题主要考查一元二次方程的实际应用----面积问题,根据题意,列出一元二次方程,是解题的关键.22、(1);(2)抽到标有两个数字的卡片的概率是.【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等情况数和抽到标有3、6两个数字的卡片的情况数,然后根据概率公式即可得出答案.【详解】(1)乙袋子里装有标有三个数字的卡片共3张,则抽到标有数字的概率为;故答案为:;(2)根据题意画图如下:共有种等情况数,其中抽到标有两个数字有种,则抽到标有两个数字的卡片的概率是.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23、35°【分析】连接OD,根据切线的性质得∠ODC=90°,根据圆周角定理即可求得答案.【详解】连接OD,∵CD为⊙O的切线,∴∠ODC=90°,∴∠DOC=90°﹣∠C=70°,由圆周角定理得,∠A=∠DOC=35°.【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径.24、(1)1;(1)2,2;(3)3【分析】(1)利用总人数减去其它环的人数即可;(1)根据众数的定义和中位数的定义即可得出结论;(3)先计算出9环(含9环)的人数占总人数的百分率,然后乘500即可.【详解】解:(1)(名)故答案为:1.(1)由表格可知:10名学生的射击成绩的众数是2环;这10名学生的射击成绩的中位数应是从小到大排列后,第5名和第6名成绩的平均数,∴这

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论