版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.点P(x﹣1,x+1)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.103.一元二次方程4x2﹣3x+=0根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根4.如果将抛物线y=﹣x2﹣2向右平移3个单位,那么所得到的新抛物线的表达式是()A.y=﹣x2﹣5B.y=﹣x2+1C.y=﹣(x﹣3)2﹣2D.y=﹣(x+3)2﹣25.如图,半径为3的经过原点和点,是轴左侧优弧上一点,则为()A. B. C. D.6.已知△ABC∽△DEF,∠A=85°;∠F=50°,那么cosB的值是()A.1 B. C. D.7.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到颜色相同的球的概率为()A. B. C. D.8.下列方程是一元二次方程的是()A.2x2-5x+3 B.2x2-y+1=0 C.x2=0 D.+x=29.如图,的半径等于,如果弦所对的圆心角等于,那么圆心到弦的距离等于()A. B. C. D.10.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A. B. C. D.11.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.12.下列图形中的角是圆周角的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中有两点和,以原点为位似中心,相似比为,把线段缩短为线段,其中点与点对应,点与点对应,且在y轴右侧,则点的坐标为________.14.在一个不透明的盒子里有2个红球和个白球,这些求除颜色外其余完全相同,摇匀后随机摸出一个,摸出红球的概率是,则的值为__________.15.已知一组数据:4,2,5,0,1.这组数据的中位数是_____.16.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.17.计算:__________.18.如图,直线与抛物线交于,两点,点是轴上的一个动点,当的周长最小时,_.三、解答题(共78分)19.(8分)“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为;(2)请利用树状图或列表法求两人被分配到同一个项目组的概率.20.(8分)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证PA=PC.21.(8分)《厉害了,我的国》是在央视财经频道的纪录片《辉煌中国》的基础上改编而成的电影记录了过去五年以来中国桥、中国路、中国车、中国港、中国网等超级工程的珍贵影像.小明和小红都想去观看这部电影,但是只有一-张电影票,于是他们决定采用摸球的办法决定谁去看电影,规则如下:在一个不透明的袋子中装有编号为的四个球(除编号外都相同),小明从中随机摸出一个球,记下数字后放回,小红再从中摸出一个球,记下数字,若两次数字之和大于则小明获得电影票,若两次数字之和小于则小红获得电影票.(1)请用列表或画树状图的方法表示出两数和的所有可能的结果;(2)分别求出小明和小红获得电影票的概率.22.(10分)用适当的方法解下方程:23.(10分)五一期间,小红和爸爸妈妈去开元寺参观,对东西塔这对中国现存最高也是最大的石塔赞叹不已,也对石塔的高度产生了浓厚的兴趣.小红进行了以下的测量:她到与西塔距离27米的一栋大楼处,在楼底A处测得塔顶B的仰角为60°,再到楼顶C处测得塔顶B的仰角为30°.那么你能帮小红计算西塔BD和大楼AC的高度吗?24.(10分)如图,在△ABC和△ADE中,,点B、D、E在一条直线上,求证:△ABD∽△ACE.25.(12分)解方程:(1)3x(x-2)=4(x-2);(2)2x2-4x+1=026.如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线过点A(—1,0),与⊙C相切于点D,求直线的解析式.
参考答案一、选择题(每题4分,共48分)1、D【解析】本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1)x-1>0,x+1>0,解得x>1,故x-1>0,x+1>0,点在第一象限;(2)x-1<0,x+1<0,解得x<-1,故x-1<0,x+1<0,点在第三象限;(3)x-1>0,x+1<0,无解;(4)x-1<0,x+1>0,解得-1<x<1,故x-1<0,x+1>0,点在第二象限.故点P不能在第四象限,故选D.2、B【解析】先通过解方程求出等腰三角形两边的长,然后利用三角形三边关系确定等腰三角形的腰和底的长,进而求出三角形的周长.本题解析:x²-4x+3=0(x−3)(x−1)=0,x−3=0或x−1=0,所以x₁=3,x₂=1,当三角形的腰为3,底为1时,三角形的周长为3+3+1=7,当三角形的腰为1,底为3时不符合三角形三边的关系,舍去,所以三角形的周长为7.故答案为7.考点:解一元二次方程-因式分解法,三角形三边关系,等腰三角形的性质3、D【分析】根据方程的系数结合根的判别式,即可得出△>0,由此即可得出原方程有两个不相等的实数根.【详解】解:4x2﹣3x+=0,这里a=4,b=﹣3,c=,b2﹣4ac=(﹣3)2﹣4×=5>0,所以方程有两个不相等的实数根,故选:D.【点睛】本题考查的知识点是根据一元二次方程根的判别式来判断方程的解的情况,熟记公式是解此题的关键.4、C【解析】先求出原抛物线的顶点坐标,再根据向右平移横坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】y=−x2−2的顶点坐标为(0,−2),∵向右平移3个单位,∴平移后的抛物线的顶点坐标为(3,−2),∴所得到的新抛物线的表达式是y=−(x−3)2−2.故选:C.【点睛】考查二次函数图象的平移,掌握二次函数图象平移的规律是解题的关键.5、B【分析】连接CA与x轴交于点D,根据勾股定理求出OD的长,求出,再根据圆心角定理得,即可求出的值.【详解】设与x轴的另一个交点为D,连接CD∵∴CD是的直径∴在中,,根据勾股定理可得∴根据圆心角定理得∴故答案为:B.【点睛】本题考查了三角函数的问题,掌握圆周角定理、勾股定理、锐角三角函数的定义是解题的关键.6、C【分析】由题意首先根据相似三角形求得∠B的度数,然后根据特殊角的三角函数值确定正确的选项即可.【详解】解:△ABC∽△DEF,∠A=85°,∠F=50°,∴∠C=∠F=50°,∴∠B=180°-∠A-∠C=180°-85°-50°=45°,∴cosB=cos45°=.故选:C.【点睛】本题主要考查相似三角形的性质以及三角函数相关,解题的关键是熟练掌握相似三角形的对应角相等.7、C【分析】用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件的占总数的几分之几即可【详解】解:两次摸球的所有的可能性树状图如下:
共有4种等可能的结果,其中两次都摸到颜色相同的球结果共有2种,
∴两次都摸到颜色相同的球的概率为.
故选C.【点睛】本题考查用树状图或列表法求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别.8、C【解析】一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、不是方程,故本选项错误;B、方程含有两个未知数,故本选项错误;C、符合一元二次方程的定义,故本选项正确;D、不是整式方程,故本选项错误.故选:C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.9、C【分析】过O作OD⊥AB于D,根据等腰三角形三线合一得∠BOD=60°,由30°角所对的直角边等于斜边的一半求解即可.【详解】解:过O作OD⊥AB,垂足为D,∵OA=OB,∴∠BOD=∠AOB=×120°=60°,∴∠B=30°,∴OD=OB=×4=2.即圆心到弦的距离等于2.故选:C.【点睛】本题考查圆的基本性质及等腰三角形的性质,含30°角的直角三角形的性质,根据题意作出辅助线,解直角三角形是解答此题的关键.10、B【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=.
故选B.11、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,是中心对称图形,故此选项正确;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,不是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误;
故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12、C【解析】根据圆周角的定义来判断即可.圆周角必须符合两个条件:顶点在圆上,两边与圆相交,二者缺一都不是.【详解】解:圆周角的定义是:顶点在圆上,并且角的两边和圆相交的角叫圆周角.A、图中的角的顶点不在圆上,不是圆周角;B、图中的角的顶点也不在圆上,不是圆周角;C、图中的角的顶点在圆上,两边与圆相交,是圆周角;D.图中的角的顶点在圆上,而两边与圆不相交,不是圆周角;故选:【点睛】本题考查了圆周角的定义.圆周角必须符合两个条件.二、填空题(每题4分,共24分)13、【分析】根据位似变换的性质计算即可.【详解】∵以原点O为位似中心,相似比为,把线段AB缩短为线段CD,B(6,3),∴点D的坐标为:,即,故答案为:.【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.14、1【分析】根据红球的概率结合概率公式列出关于n的方程,求出n的值即可【详解】解:∵摸到红球的概率为∴解得n=1.
故答案为:1.【点睛】本题考查概率的求法与运用,根据概率公式求解即可:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率15、1【分析】要求中位数,按从小到大的顺序排列后,找出最中间的一个数(或最中间的两个数的平均数)即可.【详解】解:从小到大排列此数据为:0,2,1,4,5,第1位是1,则这组数据的中位数是1.故答案为:1.【点睛】本题考查了中位数的定义,解决本题的关键是熟练掌握中位数的概念及中位数的确定方法.16、∠P=∠B(答案不唯一)【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件为:∠B=∠P
∵∠PAB=∠QAC,
∴∠PAQ=∠BAC
∵∠B=∠P,
∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.17、【分析】本题涉及零指数幂、负整数指数幂、二次根式化简三个考点,在计算时需要针对每个考点分别进行计算,然后再进行加减运算即可.【详解】3-4-1=-2.故答案为:-2.【点睛】本题考查的是实数的运算能力,注意要正确掌握运算顺序及运算法则.18、.【分析】根据轴对称,可以求得使得的周长最小时点的坐标,然后求出点到直线的距离和的长度,即可求得的面积,本题得以解决.【详解】联立得,解得,或,∴点的坐标为,点的坐标为,∴,作点关于轴的对称点,连接与轴的交于,则此时的周长最小,点的坐标为,点的坐标为,设直线的函数解析式为,,得,∴直线的函数解析式为,当时,,即点的坐标为,将代入直线中,得,∵直线与轴的夹角是,∴点到直线的距离是:,∴的面积是:,故答案为.【点睛】本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.三、解答题(共78分)19、(1);(2).【分析】(1)直接利用概率公式计算;(2)先利用画树状图展示所有9种等可能的结果数,找出两人被分配到同一个项目组的结果数,然后根据概率公式计算.【详解】解:(1)小明被分配到“迷你马拉松”项目组的概率为;(2)画树状图为:共有9种等可能的结果数,其中两人被分配到同一个项目组的结果数为3,所以两人被分配到同一个项目组的概率==.【点睛】此题主要考查概率的求解,解题的关键是熟知树状图的画法.20、见解析.【分析】连接AC,由圆心角、弧、弦的关系得出,进而得出,根据等弧所对的圆周角相等得出∠C=∠A,根据等角对等边证得结论.【详解】解:如图,连接.∵,∴.∴,即.∴.∴.【点睛】本题考查了圆心角、弧、弦的关系,圆周角定理,等腰三角形的判定等,熟练掌握性质定理是解题的关键.21、(1)答案见解析;(2)小明获得电影票的概率;小红获得电影粟的概率.【分析】(1)利用树状图展示所有16种等可能的等可能的结果数;(2)找出次数字之和大于5的结果数和两次数字之和小于5的结果数,然后根据概率公式计算即可.【详解】解:(1)画树状图为:两个数字之和有2、3、4、5、3、4、5、6、4、5、6、7、5、6、7、8这16种等可能的结果数;(2)由树状图知,两个数字之和有种等可能的结果数,两次数字之和大于的结果有种,小明获得电影票的概率两次数字之和小于的结果有种,小红获得电影粟的概率.综上,小明获得电影票的概率,小红获得电影粟的概率.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.22、x=3或1【分析】移项,因式分解得到,再求解.【详解】解:,∴,∴,∴,∴x-3=0或x-1=0,∴x=3或1.【点睛】本题考查了一元二次方程,解题的关键是根据方程的形式选择因式分解法.23、西塔BD的高度为27米,大楼AC的高度为米.【分析】作CE⊥BD于E,根据正切的定义求出BD,根据正切的定义求出BE,计算求出DE,得到AC的长.【详解】解:作CE⊥BD于E,
则四边形ACED为矩形,
∴CE=AD=27,AC=DE,
在Rt△BAD中,tan∠BAD=,则BD=AD•tan∠BAD=27,在Rt△BCE中,tan∠BCE=,则BE=CE•tan∠BCE=,∴AC=DE=BD-BE=,答:西塔BD的高度为27米,大楼AC的高度为米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24、证明见解析;【分析】根据三边对应成比例的两个三角形相似可判定△ABC∽△ADE,根据相似三角形的性质可得∠BAC=∠DAE,即可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《人体解剖生理学》2023-2024学年第一学期期末试卷
- 淮阴师范学院《篮球》2021-2022学年第一学期期末试卷
- 淮阴师范学院《装饰雕塑》2022-2023学年第一学期期末试卷
- 黄山学院《电磁场与电磁波》2022-2023学年期末试卷
- 淮阴师范学院《伴奏与弹唱》2023-2024学年第一学期期末试卷
- DB6505T188-2024花生病虫害绿色防控技术规程
- 关于进一步做好全员安全生产培训工作的通知修改版
- 机器人在安全监控服务的创新考核试卷
- 污水处理中的藻类光合作用技术研究考核试卷
- 化学纤维在人力资源招聘等行业的应用考核试卷
- 中班健康课件《生气和快乐》
- 年度人力资源预算编制
- GB/T 43274-2023无机土壤调理剂总钙和镁含量的测定
- 增材制造设备操作员(高级工)考试复习题库(浓缩500题)
- 首饰设计师(珠宝)职业技能竞赛考试题库(含答案)
- 四书解读课件
- 学籍信息更改申请表
- 新教师如何备课课件
- GB/T 19651.1-2023杂类灯座第1部分:一般要求和试验
- 中医科老年诊疗规范
- 肺部真菌病护理课件
评论
0/150
提交评论