版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省台州黄岩区六校联考2025届数学九上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.关于的一元二次方程x2﹣2+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣22.如图,中,,顶点,分别在反比例函数()与()的图象上.则下列等式成立的是()A. B. C. D.3.用一个半径为15、圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.5 B.10 C. D.4.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为()A. B. C.1 D.5.在Rt△ABC中,∠C=90°,AB=10,sin∠B=,则BC=()A.15 B.6 C.9 D.86.如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为()A.(2,-4) B.(1,-4) C.(-1,4) D.(-4,2)7.如图,正方形的面积为16,是等边三角形,点在正方形内,在对角线上有一点,使的和最小,则这个最小值为()A.2 B.4 C.6 D.88.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9.如图,P(x,y)是反比例函数的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y轴于点B,随着自变量x的逐渐增大,矩形OAPB的面积()A.保持不变 B.逐渐增大 C.逐渐减小 D.无法确定10.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20° B.30° C.40° D.50°二、填空题(每小题3分,共24分)11.把抛物线的图像向右平移个单位,再向下平移个单位,所得图像的解析式为,则的值为___________.12.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8529865279316044005发芽频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1).13.四边形ABCD内接于⊙O,∠A=125°,则∠C的度数为_____°.14.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.15.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为.16.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC、BD,则图中阴影部分的面积为_____.17.点A(﹣3,m)和点B(n,2)关于原点对称,则m+n=_____.18.已知扇形的半径为,圆心角为,则扇形的弧长为__________.三、解答题(共66分)19.(10分)如图,抛物线与轴相交于两点,点在点的右侧,与轴相交于点.求点的坐标;在抛物线的对称轴上有一点,使的值最小,求点的坐标;点为轴上一动点,在抛物线上是否存在一点,使以四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.20.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-2,4),B(4,4),C(6,0).(1)△ABC的面积是.(2)请以原点O为位似中心,画出△A'B'C',使它与△ABC的相似比为1:2,变换后点A、B的对应点分别为点A'、B',点B'在第一象限;(3)若P(a,b)为线段BC上的任一点,则变换后点P的对应点P'的坐标为.21.(6分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△BDC∽△ABC;(2)如果BC=,AC=3,求CD的长.22.(8分)甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3、4和5;丙口袋中装有两个相同的小球,它们分别写有6和1.从这3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有两个偶数的概率是多少?(2)取出的3个小球上全是奇数的概率是多少?23.(8分)如图,在中,点,分别在,上,,,.求四边形的面积.24.(8分)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.25.(10分)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).(1)写出点Q所有可能的坐标;(2)求点Q在x轴上的概率.26.(10分)如图,在△ABC中,AB=AC,点D、E在边BC上,∠DAE=∠B=30°,且,那么的值是______.
参考答案一、选择题(每小题3分,共30分)1、A【分析】关于x的一元二次方程x²+2x+k=0有两个相等的实数根,可知其判别式为0,据此列出关于k的不等式,解答即可.【详解】根据一元二次方程根与判别式的关系,要使得x2﹣2+k=0有两个相等实根,只需要△=(-2)²-4k=0,解得k=1.故本题正确答案为A.【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2、C【解析】【分析】过A作AF垂直x轴,过B点作BE垂直与x轴,垂足分别为F,E,得出,可得出,再根据反比例函数的性质得出两个三角形的面积,继而得出两个三角形的相似比,再逐项判断即可.【详解】解:过A作AF垂直x轴,过B点作BE垂直与x轴,垂足分别为F,E,由题意可得出,继而可得出顶点,分别在反比例函数()与()的图象上∴∴∴∴A.,此选项错误,B.,此选项错误;C.,此选项正确;D.,此选项错误;故选:C.【点睛】本题考查的知识点是反比例函数的性质以及解直角三角形,解此题的关键是利用反比例函数的性质求出两个三角形的相似比.3、A【分析】根据弧长公式计算出弧长,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是10π,设圆锥的底面半径是r,列出方程求解.【详解】半径为15cm,圆心角为120°的扇形的弧长是=10π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是10π.
设圆锥的底面半径是r,
则得到2πr=10π,
解得:r=5,
这个圆锥的底面半径为5.故选择A.【点睛】本题考查弧长的计算,解题的关键是掌握弧长的计算公式.4、C【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.5、D【分析】首先根据正弦函数的定义求得AC的长,然后利用勾股定理求得BC的长.【详解】解:∴直角△ABC中,故选:D.【点睛】本题考查的是锐角三角形的正弦函数,理解熟记正弦三角函数定义是解决本题的关键.6、A【解析】过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,依据△AOB和△A1OB1相似,且相似比为1:2,即可得到,再根据△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,进而得出点B1的坐标为(2,-4).【详解】解:如图,过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,
∵点B的坐标为(-1,2),
∴BC=1,OC=2,
∵△AOB和△A1OB1相似,且相似比为1:2,∴,∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,
∴△BOC∽△B1OD,
∴OD=2OC=4,B1D=2BC=2,
∴点B1的坐标为(2,-4),
故选:A.【点睛】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.7、B【分析】由于点B与点D关于AC对称,所以连接BE,与AC的交点即为F,此时,FD+FE=BE最小,而BE是等边三角形ABE的边,BE=AB,由正方形面积可得AB的长,从而得出结果.【详解】解:由题意可知当点P位于BE与AC的交点时,有最小值.设BE与AC的交点为F,连接BD,∵点B与点D关于AC对称∴FD=FB∴FD+FE=FB+FE=BE最小又∵正方形ABCD的面积为16∴AB=1∵△ABE是等边三角形∴BE=AB=1.故选:B.【点睛】本题考查的知识点是轴对称中的最短路线问题,解题的关键是弄清题意,找出相对应的相等线段.8、B【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、A【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,所以随着x的逐渐增大,矩形OAPB的面积将不变.【详解】解:依题意有矩形OAPB的面积=2×|k|=3,所以随着x的逐渐增大,矩形OAPB的面积将不变.
故选:A.【点睛】本题考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,解题的关键是掌握图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.10、C【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.二、填空题(每小题3分,共24分)11、【分析】根据抛物线的平移规律:左加右减,上加下减,得出平移后的抛物线解析式,化为一般形式即可得解.【详解】由题意,得平移后的抛物线为:即∴故答案为:4.【点睛】此题主要考查根据抛物线的平移规律求参数,熟练掌握,即可解题.12、0.1【分析】6批次种子粒数从100粒增加到5000粒时,种子发芽的频率趋近于0.101,所以估计种子发芽的概率为0.101,再精确到0.1,即可得出答案.【详解】根据题干知:当种子粒数5000粒时,种子发芽的频率趋近于0.101,故可以估计种子发芽的概率为0.101,精确到0.1,即为0.1,故本题答案为:0.1.【点睛】本题比较容易,考查利用频率估计概率,大量反复试验下频率稳定值即概率.13、1.【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=1°,故答案为:1.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键.14、【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.15、(x+1);.【解析】试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.故答案为(x+1),.考点:由实际问题抽象出一元二次方程;勾股定理的应用.16、2π【解析】通过分析图可知:△ODB经过旋转90°后能够和△OCA重合(证全等也可),因此图中阴影部分的面积=扇形AOB的面积-扇形COD的面积,所以S阴=π×(9-1)=2π.【详解】由图可知,将△OAC顺时针旋转90°后可与△ODB重合,∴S△OAC=S△OBD;因此S阴影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=π×(9-1)=2π.故答案为2π.【点睛】本题中阴影部分的面积可以看作是扇形AOB与扇形COD的面积差,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.17、1【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】∵点A(-3,m)与点A′(n,2)关于原点中心对称,∴n=3,m=-2,∴m+n=1,故答案为1.【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.18、【分析】直接根据弧长公式即可求解.【详解】∵扇形的半径为8cm,圆心角的度数为120°,
∴扇形的弧长为:.故答案为:.【点睛】本题考查了弧长的计算.解答该题需熟记弧长的公式.三、解答题(共66分)19、(1),;(2);(3)点的坐标为,或.【分析】(1)把y=0代入函数解析式,解方程可求得A、B两点的坐标;把x=0代入函数解析式可求得C点的坐标.
(2)连接BC,交对称轴于P,P即为使PB+PC的值最小,设直线BC的解析式,把B、C的坐标代入即可求得系数,进而求得解析式,令x=2时,即可求得P的坐标;
(3)分两种情况:
①当存在的点N在x轴的上方时,根据对称性可得点N的坐标为(4,);
②当存在的点N在x轴下方时,作辅助线,构建三角形全等,证明得,即N点的纵坐标为-,列方程可得N的坐标.【详解】(1)当时,当时,,化简,得.解得.连接,交对称轴于点,连接.点和点关于抛物线的对称轴对称,.要使的值最小,则应使的值最小,所以与对称轴的交点使得的值最小.设的解析式为.将代入,可得,解得,抛物线的对称轴为直线当时,,①当在轴上方,此时,且.则四边形是平行四边形.②当在轴下方;作,交于点.如果四边形是平行四边形...又,.当时,,综上所述,点的坐标为,或.【点睛】本题考查了待定系数法求二次函数解析式.轴对称的性质、平行四边形的判定、三角形全等的性质和判定等知识,难度适中,第2问解题的关键是熟练掌握平行四边形的判定,采用分类讨论的思想和数形结合的思想解决问题.20、(1)12;(2)作图见详解;(3).【分析】(1)先以AB为底,计算三角形的高,利用面积公式即可求出△ABC的面积;(2)根据题意利用位似中心相关方法,画出△A'B'C',使它与△ABC的相似比为1:2即可;(3)根据(2)的作图,利用相似比为1:2,直接观察即可得到答案.【详解】解:(1)由△ABC的顶点坐标分别为A(-2,4),B(4,4),C(6,0),可知底AB=6,高为4,所以△ABC的面积为12;(2);(3)根据相似比为1:2,可知P.【点睛】本题主要考查作图-位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.21、(1)详见解析;(1)CD=1.【分析】(1)根据相似三角形的判定得出即可;(1)根据相似得出比例式,代入求出即可.【详解】证明:(1)∵∠DBC=∠A,∠C=∠C,∴△BDC∽△ABC;(1)∵△BDC∽△ABC,∴,∴,∴CD=1.【点睛】考核知识点:相似三角形的判定和性质.22、(1);(2).【分析】先画出树状图得到所有等可能的情况数;(1)找出3个小球上恰好有两个偶数的情况数,然后利用概率公式进行计算即可;(2)找出3个小球上全是奇数的情况数,然后利用概率公式进行计算即可.【详解】根据题意,画出如下的“树状图”:从树状图看出,所有可能出现的结果共有12个;(1)取出的3个小球上恰好有两个偶数的结果有4个,即1,4,6;2,3,6;2,4,1;2,5,6;所以(两个偶数);(2)取出的3个小球上全是奇数的结果有2个,即1,3,1;1,5,1;所以,(三个奇数).【点睛】本题考查的是用树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23、21.【分析】利用平行判定,然后利用相似三角形的性质求得,从而求得,使问题得解.【详解】解:∵,∴,.∴.∵,∴.∵,∴.∴.【点睛】本题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是本题的解题关键.24、(1)y=﹣+2x﹣;(2);(3)存在最大值,此时P点坐标(,).【分析】(1)将A、B两点坐标分别代入抛物线解析式,可求得待定系数a和b,即可确定抛物线解析式;(2)因为圆的切线垂直于过切点的半径,所以过A作AD⊥BC于点D,则AD为⊙A的半径,由条件可证明△ABD∽△CBO,根据抛物线解析式求出C点坐标,根据勾股定理求出BC的长,再求出AB的长,利用相似三角形的性质即两个三角形相似,对应线段成比例,可求得AD的长,即为⊙A的半径;(3)先由B,C点坐标求出直线BC解析式,然后过P作PQ∥y轴,交直线BC于点Q,交x轴于点E,因为P在抛物线上,P,Q点横坐标相同,所以可设出P、Q点的坐标,并把PQ的长度表示出来,进而表示出△PQC和△PQB的面积,两者相加就是△PBC的面积,再利用二次函数的性质讨论其最大值,容易求得P点坐标.【详解】解:(1)∵抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),∴把A、B两点坐标代入可得:,解得:,∴抛物线解析式为y=﹣+2x﹣;(2)过A作AD⊥BC于点D,如图1:因为圆的切线垂直于过切点的半径,所以AD为⊙A的半径,由(1)可知C(0,﹣),且A(1,0),B(5,0),∴OB=5,AB=OB﹣OA=4,OC=,在Rt△OBC中,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加强幼儿园安全
- 第四章第三节幼儿的亲子关系(课件)-《幼儿心理学》(人教版第二版)
- 天津市南开中学2024-2025学年高三上学期10月月考物理试题(原卷版)
- 乐器物流运输合同范本
- 1001-4常见的碱(教师版)-2022-2023学年九年级下册化学课件讲义(人教版)
- 办公楼外墙改造合同模板
- 家居建材市场装修合同
- 住宅翻新改造合同协议书
- 废品回收运输承揽协议
- 书店改造三方合同模板
- QCT957-2023洗扫车技术规范
- 2024年保密知识测试试题库(综合题)
- 《做个加法表》名师课件
- 危险性较大的分部分项安全管理核查表
- ORACLE ERP EBS财务全模块操作手册中文版
- 人教版 年六年级数学上册教案(全册)
- 2024年入团积极分子结业考试试题
- 国企纪委业务培训课件
- 2022-2023学年扬州市宝应县五年级上学期期中测试数学试卷(含答案解析)
- 保安服务针对本项目的服务特点、难点分析及解决措施
- 《团购产品目录》课件
评论
0/150
提交评论