版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省保定市安国市2025届九上数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.函数y=与y=kx+k(k为常数且k≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.2.如图,是的直径,点在上,,则的度数为()A. B. C. D.3.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O外 C.点P在⊙O上 D.无法判断4.下列各式中属于最简二次根式的是()A. B. C. D.5.已知反比例函数,则下列结论正确的是()A.点(1,2)在它的图象上B.其图象分别位于第一、三象限C.随的增大而减小D.如果点在它的图象上,则点也在它的图象上6.如图,圆锥的底面半径OB=6cm,高OC=8cm,则这个圆锥的侧面积是()A.30 B.30π C.60π D.48π7.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.8.如图,已知是的直径,,则的度数为()A. B. C. D.9.如图,在中,点分别在边上,且为边延长线上一点,连接,则图中与相似的三角形有()个A. B. C. D.10.如图,三个边长均为的正方形重叠在一起,、是其中两个正方形对角线的交点,则两个阴影部分面积之和是()A. B. C. D.11.如图,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点B,F的坐标分别为(-4,4),(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(点P在GC上)是位似中心,则点P的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)12.如图,⊙是的外接圆,已知平分交⊙于点,交于点,若,,则的长为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,若被击打的小球飞行高度(单位:)与飞行时间(单位:)之间具有的关系为,则小球从飞出到落地所用的时间为_____.14.已知关于x的方程x2-3x+m=0的一个根是1,则m=__________.15.如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.16.张老师在讲解复习《圆》的内容时,用投影仪屏幕展示出如下内容:如图,内接于,直径的长为2,过点的切线交的延长线于点.张老师让同学们添加条件后,编制一道题目,并按要求完成下列填空.(1)在屏幕内容中添加条件,则的长为______.(2)以下是小明、小聪的对话:小明:我加的条件是,就可以求出的长小聪:你这样太简单了,我加的是,连结,就可以证明与全等.参考上面对话,在屏幕内容中添加条件,编制一道题目(此题目不解答,可以添线、添字母).______.17.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=3,那么正方形ABCD的面积是__________.18.如图,平行四边形分别切于点,连接并延长交于点,连接与刚好平行,若,则的直径为______.三、解答题(共78分)19.(8分)“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为;(2)请利用树状图或列表法求两人被分配到同一个项目组的概率.20.(8分)为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类女生有名,D类男生有名,将上面条形统计图补充完整;(2)扇形统计图中“课前预习不达标”对应的圆心角度数是;(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,21.(8分)某中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学代表学校参加全市汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.22.(10分)如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.23.(10分)已知是的反比例函数,下表给出了与的一些值:141(1)写出这个反比例函数表达式;(2)将表中空缺的值补全.24.(10分)如图,在平面直角坐标系中,一次函数与反比例函数的图象相交于两点,过点作轴于点,,,点的坐标为.(1)求一次函数和反比例函数的表达式;(2)求的面积;(3)是轴上一点,且是等腰三角形,请直接写出所有符合条件的点坐标.25.(12分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:1.414,1.732)26.如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若AE=5,AC=4,求BE的长.
参考答案一、选择题(每题4分,共48分)1、A【解析】当k>0时,双曲线y=的两支分别位于一、三象限,直线y=kx+k的图象过一、二、三象限;当k<0时,双曲线y=的两支分别位于二、四象限,直线y=kx+k的图象过二、三、四象限;由此可得,只有选项A符合要求,故选A.点睛:本题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.反比例函数y=的图象当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.一次函数图象与k、b的关系:①k>0,b>0时,图像经过一二三象限;②k>0,b<0,图像经过一三四象限;③k>0,b=0时,图像经过一三象限,并过原点;④k<0,b>0时,图像经过一二四象限;⑤k<0,b<0时,图像经过二三四象限;⑥k<0,b=0时,图像经过二四象限,并过原点.2、B【分析】连接AC,根据圆周角定理,分别求出∠ACB=90,∠ACD=20,即可求∠BCD的度数.【详解】连接AC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠AED=20°,
∴∠ACD=∠AED=20°,
∴∠BCD=∠ACB+∠ACD=90°+20°=110°,
故选:B.【点睛】本题考查的是圆周角定理:①直径所对的圆周角为直角;②在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3、B【解析】比较OP与半径的大小即可判断.【详解】,,,点P在外,故选B.【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.4、A【分析】根据最简二次根式的定义解答即可.【详解】A.是最简二次根式;B.∵=,∴不是最简二次根式;C.∵=,∴不是最简二次根式;D.∵,∴不是最简二次根式;故选A.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.5、D【分析】根据反比例函数图象上点的坐标特征以及反比例函数的性质解答即可.【详解】解:∵∴图象在二、四象限,y随x的增大而增大,选项A、B、C错误;∵点在函数的图象上,∴∵点横纵坐标的乘积∴则点也在函数的图象上,选项D正确.故选:D.【点睛】本题考查的知识点是反比例函数的的性质,掌握反比例函数图象的特征及其性质是解此题的关键.6、C【解析】试题分析:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴这个圆锥漏斗的侧面积是:πrl=π×6×10=60π(cm2).故选C.考点:圆锥的计算.7、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.8、B【分析】根据同弧所对的圆周角相等可得∠E=∠B=40°,再根据直径所对的圆周角是直角得到∠ACE=90°,最后根据直角三角形两锐角互余可得结论.【详解】∵在⊙O中,∠E与∠B所对的弧是,∴∠E=∠B=40°,∵AE是⊙O的直径,∴∠ACE=90°,∴∠AEC=90°-∠E=90°-40°=50°,故选:B.【点睛】此题主要考查了圆周角定理以及直径所对的圆周角是直角和直角三角形两锐角互余等知识,求出∠E=40°,是解此题的关键.9、D【分析】根据平行四边形和平行线的性质,得出对应的角相等,再结合相似三角形的性质即可得出答案.【详解】∵EF∥CD,ABCD是平行四边形∴EF∥CD∥AB∴∠GDP=∠GAB,∠GPD=∠GBA∴△GDP∽△GAB又EF∥AB∴∠GEQ=∠GAB,∠GQE=∠GBA∴△GEQ∽△GAB又∵ABCD为平行四边形∴AD∥BC∴∠GDP=∠BCP,∠CBP=∠G∴∠BCP=∠GAB又∠GPD=∠BPC∴∠GBA=∠BPC∴△GAB∽△BCP又∠BQF=∠GQE∴∠BQF=∠GBA∴△GAB∽△BFQ综上共有4个三角形与△GAB相似故答案选择D.【点睛】本题考查的是相似三角形的判定,需要熟练掌握相似三角形的判定方法,此外,还需要掌握平行四边形和平行线的相关知识.10、A【分析】连接AN,CN,通过将每部分阴影的面积都转化为正方形ACFE的面积的,则答案可求.【详解】如图,连接AN,CN∵四边形ACFE是正方形∴∵,∴∴∴所以四边形BCDN的面积为正方形ACFE的面积的同理可得另一部分阴影的面积也是正方形ACFE的面积的∴两部分阴影部分的面积之和为正方形ACFE的面积的即故选A【点睛】本题主要考查不规则图形的面积,能够利用全等三角形对面积进行转化是解题的关键.11、C【分析】如图连接BF交y轴于P,由BC∥GF可得=,再根据线段的长即可求出GP,PC,即可得出P点坐标.【详解】连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴==,∴GP=1,PC=2,∴点P的坐标为(0,2),故选C.【点睛】此题主要考查位似图形的性质,解题的关键是根据位似图形的对应线段成比例.12、A【分析】先根据角平分线的定义、圆周角定理可得,再根据相似三角形的判定定理得出,然后根据相似三角形的性质即可得.【详解】平分弧BD与弧CD相等又,即解得故选:A.【点睛】本题考查了角平分线的定义、圆周角定理、相似三角形的判定定理与性质,利用圆周角定理找到两个相似三角形是解题关键.二、填空题(每题4分,共24分)13、1.【分析】根据关系式,令h=0即可求得t的值为飞行的时间.【详解】解:依题意,令得:∴得:解得:(舍去)或∴即小球从飞出到落地所用的时间为故答案为1.【点睛】本题考查了二次函数的性质在实际生活中的应用.此题为数学建模题,关键在于读懂小球从飞出到落地即飞行的高度为0时的情形,借助二次函数解决实际问题.此题较为简单.14、1【解析】试题分析:∵关于x的方程的一个根是1,∴1﹣3×1+m=0,解得,m=1,故答案为1.考点:一元二次方程的解.15、6【解析】由题意得,∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△AOP与△CDO中,,∴△AOP≌△CDO(AAS),∴AP=CO=AC﹣AO=9﹣3=6.故答案为6.16、3,求的长【分析】(1)连接OC,如图,利用切线的性质得∠OCD=90°,再根据含30°的直角三角形三边的关系得到OD=2,然后计算OA+OD即可;
(2)添加∠DCB=30°,求ACAC的长,利用圆周角定理得到∠ACB=90°,再证明∠A=∠DCB=30°,然后根据含30°的直角三角形三边的关系求AC的长.【详解】解:(1)连接OC,如图,
∵CD为切线,
∴OC⊥CD,
∴∠OCD=90°,
∵∠D=30°,
∴OD=2OC=2,
∴AD=AO+OD=1+2=3;
(2)添加∠DCB=30°,求AC的长,
解:∵AB为直径,
∴∠ACB=90°,
∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,
∴∠ACO=∠DCB,
∵∠ACO=∠A,
∴∠A=∠DCB=30°,
在Rt△ACB中,BC=AB=1,
∴AC==.故答案为3;,求的长.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,得出垂直关系.17、1【分析】由正方形的面积公式可求解.【详解】解:∵AC=3,
∴正方形ABCD的面积=3×3×=1,
故答案为:1.【点睛】本题考查了正方形的性质,熟练运用正方形的性质是解题的关键.18、【分析】先证得四边形AGCH是平行四边形,则,再证得,求得,证得DO⊥HC,根据,即可求得半径,从而求得结论.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥HC,∴四边形AGCH是平行四边形,∴,∵是⊙O的切线,且切点为、,∴,∠GCH=∠HCD,∵AD∥BC,∴∠DHC=∠GCH,∴∠DHC=∠HCD,∴三角形DHC为等腰三角形,∴,∴,∴,,连接OD、OE,如图,∵是⊙O的切线,且切点为、,∴DO是∠FDE的平分线,又∵,∴DO⊥HC,∴∠DOC=90,∵切⊙O于,∴OE⊥CD,∵∠OCE+∠COE=90,∠DOE+∠COE=90,∴∠OCE=∠DOE,∴,∴,即,∴,∴⊙O的直径为:故答案为:.【点睛】本题考查了平行四边形的判定和性质,切线长定理,相似三角形的判定和性质,等腰三角形的判定和性质,证得为等腰三角形是解题的关键.三、解答题(共78分)19、(1);(2).【分析】(1)直接利用概率公式计算;(2)先利用画树状图展示所有9种等可能的结果数,找出两人被分配到同一个项目组的结果数,然后根据概率公式计算.【详解】解:(1)小明被分配到“迷你马拉松”项目组的概率为;(2)画树状图为:共有9种等可能的结果数,其中两人被分配到同一个项目组的结果数为3,所以两人被分配到同一个项目组的概率==.【点睛】此题主要考查概率的求解,解题的关键是熟知树状图的画法.20、(1)3,1;(2)36°;(3)【分析】(1)根据B类有6+4=10人,所占的比例是50%,据此即可求得总人数,利用总人数乘以对应的比例即可求得C类的人数,然后求得C类中女生人数,同理求得D类男生的人数;(2)利用360°×课前预习不达标百分比,即可解答;
(3)利用列举法即可表示出各种情况,然后利用概率公式即可求解.【详解】(1)C类学生人数:20×25%=5(名)C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),故C类女生有3名,D类男生有1名;补充条形统计图,故答案为3,1;(2)360°×(1﹣50%﹣25%﹣15%)=36°,答:扇形统计图中“课前预习不达标”对应的圆心角度数是36°;故答案为36°;(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)=.【点睛】此题考查条形统计图和扇形统计图的综合运用,解题关键在于读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)见解析;(2)【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【详解】(1)画树状图得:(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)PA的长为,⊙O的半径为;(2)见解析;(3)⊙O的半径为2或或【分析】(1)过点A作BP的垂线,作直径AM,先在Rt△ABH中求出BH,AH的长,再在Rt△AHP中用勾股定理求出AP的长,在Rt△AMP中通过锐角三角函数求出直径AM的长,即求出半径的值;(2)证∠APB=∠PAD=2∠PAE,即可推出结论;(3)分三种情况:当AE⊥BD时,AB是⊙O的直径,可直接求出半径;当AE⊥AD时,连接OB,OE,延长AE交BC于F,通过证△BFE∽△DAE,求出BE的长,再证△OBE是等边三角形,即得到半径的值;当AE⊥AB时,过点D作BC的垂线,通过证△BPE∽△BND,求出PE,AE的长,再利用勾股定理求出直径BE的长,即可得到半径的值.【详解】(1)如图1,过点A作BP的垂线,垂足为H,作直径AM,连接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=AB=2,AH=AB•sin60°=2,∴HP=BP﹣BH=1,∴在Rt△AHP中,AP==,∵AB是直径,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM===,∴⊙O的半径为,即PA的长为,⊙O的半径为;(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴=,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=2,BF=AB=2,∴=,∴EF=,在Rt△BFE中,BE===,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r=;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=2,CN=CD=2,∴PQ=DN=2,设QE=x,则PE=2﹣x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴=,∴=,∴BP=10﹣x,在Rt△ABE与Rt△BPE中,AB2+AE2=BP2+PE2,∴16+4x2=(10﹣x)2+(2﹣x)2,解得,x1=6(舍),x2=,∴AE=2,∴BE===2,∴r=,∴⊙O的半径为2或或.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.23、(1);(2),-4,,-1,3,2,3,【分析】(1)设出反比例函数解析式,把代入解析式即可得出答案;(2)让的乘积等于3计算可得表格中未知字母的值.【详解】解:(1)设,,∴(2)=,=-4,=,=-1,=3,=2,=3,=.故答案为:,-4,,-1,3,2,3,.【点睛】本题考查了反比例函数的解析式,熟练掌握解析式的求法是解题的关键.24、(1),;(2)9;(3)点坐标为(0,5)或(0,-5)或(0,8)或【分析】(1)先根据勾股定理求出OD=3,AD=4,得出点A(3,4),进而求出反比例函数解析式,再求出点B坐标,最后用待定系数法求出直线AB解析式;(2)求出直线AB与y轴的交点坐标,再根据解答即可;(3)设出点P坐标,进而表示出OP,AP,OA,利用等腰三角形的两边相等建立方程求解即可得出结论.【详解】(1)∵,∴设,则,,∴,∴,,∴点的坐标为(3,4),∵过点,∴,∴,当时,,∴点坐标为(-6,-2),∵直线过,∴解得∴直线解析式为.(2)如图,记直线与轴交于点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年宣传设计施工合同
- 2024年二手房屋买卖合同(户口迁移问题)
- 风景区物业管理合同
- 2024年城市轨道交通设备买卖合同
- 2024年城市供水管道建设工字钢租赁合同
- 物流服务合同范本
- 2024年环磷酰胺原料药项目评价分析报告
- 2024年聚砜及其合金项目综合评估报告
- 2024至2030年中国抛丸清理器易损件数据监测研究报告
- 2024至2030年中国五金塑胶制品行业投资前景及策略咨询研究报告
- 新青岛版五四制2021-2022四年级科学上册实验指导
- 副神经节瘤图文.ppt
- 业务流程绘制方法IDEF和IDEFPPT课件
- (完整版)垃圾自动分拣机构PLC控制毕业设计.doc
- 小学四年级音乐课程标准
- 我的一次教研经历
- 双向细目表和单元测试卷及组卷说明
- 工业厂房中英文对照施工组织设计(土建、水电安装)范本
- PCR仪使用手册
- 离子色谱法测定空气中二氧化硫
- 水蒸汽热力性质表
评论
0/150
提交评论