2025届云南省西双版纳景洪市九年级数学第一学期期末联考试题含解析_第1页
2025届云南省西双版纳景洪市九年级数学第一学期期末联考试题含解析_第2页
2025届云南省西双版纳景洪市九年级数学第一学期期末联考试题含解析_第3页
2025届云南省西双版纳景洪市九年级数学第一学期期末联考试题含解析_第4页
2025届云南省西双版纳景洪市九年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省西双版纳景洪市九年级数学第一学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知抛物线的解析式为y=(x-2)2+1,则这条抛物线的顶点坐标是().A.(﹣2,1)B.(2,1)C.(2,﹣1)D.(1,2)2.若函数与的图象如图所示,则函数的大致图象为()A. B. C. D.3.抛物线y=2x2﹣3的顶点坐标是()A.(0,﹣3) B.(﹣3,0) C.(﹣,0) D.(0,﹣)4.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF,若AB=3,则菱形AECF的面积为()A.1 B.2 C.2 D.45.若点A(1,y1)、B(2,y2)都在反比例函数的图象上,则y1、y2的大小关系为A.y1<y2 B.y1≤y2 C.y1>y2 D.y1≥y26.如图,在△ABC中,∠A=45°,∠C=90°,点D在线段AC上,∠BDC=60°,AD=1,则BD等于()A. B.+1 C.-1 D.7.如图,切于两点,切于点,交于.若的周长为,则的值为()A. B. C. D.8.如图所示,某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛,顶层一个,以下各层堆成六边形,逐层每边增加一个花盆,则第七层的花盆的个数是()A.91 B.126 C.127 D.1699.如图所示的几何体的左视图是()A. B. C. D.10.已知将二次函数y=x²+bx+c的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为y=x²-4x-5,则b,c的值为()A.b=1,c=6 B.b=1.c=-5 C.b=1.c=-6 D.b=1,c=511.下列一元二次方程,有两个不相等的实数根的是()A. B.C. D.12.如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为()A.2 B.3 C.4 D.5二、填空题(每题4分,共24分)13.如图,扇形ABC的圆心角为90°,半径为6,将扇形ABC绕A点逆时针旋转得到扇形ADE,点B、C的对应点分别为点D、E,若点D刚好落在上,则阴影部分的面积为_____.14.二次函数y=2x2﹣4x+4的图象如图所示,其对称轴与它的图象交于点P,点N是其图象上异于点P的一点,若PM⊥y轴,MN⊥x轴,则=_____.15.如图,在△ABC中,AB=AC,∠A=120°,BC=4,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是_____(保留π).16.如果一个直角三角形的两条边的长度分别是3cm和4cm,那么这个直角三角形的第三边的长度是____________.17.如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____________cm.18.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.三、解答题(共78分)19.(8分)阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图,四边形ABCD,AD∥BC,AB=AD,E为对角线AC上一点,∠BEC=∠BAD=2∠DEC,探究AB与BC的数量关系.某学习小组的同学经过思考,交流了自己的想法:小柏:“通过观察和度量,发现∠ACB=∠ABE”;小源:“通过观察和度量,AE和BE存在一定的数量关系”;小亮:“通过构造三角形全等,再经过进一步推理,就可以得到线段AB与BC的数量关系”.……老师:“保留原题条件,如图2,AC上存在点F,使DF=CF=AE,连接DF并延长交BC于点G,求的值”.(1)求证:∠ACB=∠ABE;(2)探究线段AB与BC的数量关系,并证明;(3)若DF=CF=AE,求的值(用含k的代数式表示).20.(8分)如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为____.21.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发以lcm/s的速度沿折线AC﹣CB运动,过点P作PQ⊥AB于点Q,当点P不与点A、B重合时,以线段PQ为边向右作正方形PQRS,设正方形PQRS与△ABC的重叠部分面积为S,点P的运动时间为t(s).(1)用含t的代数式表示CP的长度;(2)当点S落在BC边上时,求t的值;(3)当正方形PQRS与△ABC的重叠部分不是五边形时,求S与t之间的函数关系式;(4)连结CS,当直线CS分△ABC两部分的面积比为1:2时,直接写出t的值.22.(10分)如图,已知菱形ABCD两条对角线BD与AC的长之比为3:4,周长为40cm,求菱形的高及面积.23.(10分)将两张半径均为10的半圆形的纸片完全重合叠放一起,上面这张纸片绕着直径的一端B顺时针旋转30°后得到如图所示的图形,与直径AB交于点C,连接点与圆心O′.(1)求的长;(2)求图中下面这张半圆形纸片未被上面这张纸片重叠部分的面积.24.(10分)如图,点D在以AB为直径的⊙O上,AD平分,,过点B作⊙O的切线交AD的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:.25.(12分)为了了解全校名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题.(1)在这次问卷调查中,共抽查了_________名同学;(2)补全条形统计图;(3)估计该校名同学中喜爱足球活动的人数;(4)在体操社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加体操大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.26.如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.①试说明BE·AD=CD·AE;②根据图形特点,猜想可能等于哪两条线段的比?并证明你的猜想,(只须写出有线段的一组即可)

参考答案一、选择题(每题4分,共48分)1、B【解析】根据顶点式y=(x-h)2+k的顶点为(h,k),由y=(x-2)2+1为抛物线的顶点式,顶点坐标为(2,1).

故选:B.2、A【分析】首先根据二次函数及反比例函数的图象确定k、b的符号,然后根据一次函数的性质确定答案即可.【详解】∵二次函数的图象开口向上,对称轴>0∴a>0,b<0,

又∵反比例函数的图形位于二、四象限,∴-k<0,∴k>0

∴函数y=kx-b的大致图象经过一、二、三象限.故选:

A【点睛】本题考查的是利用反比例函数和二次函数的图象确定一次函数的系数,然后根据一次函数的性质确定其大致图象,确定一次函数的系数是解决本题的关键.3、A【分析】根据题目中的函数解析式,可以直接写出该抛物线的顶点坐标,本题得以解决.【详解】∵抛物线y=2x2﹣3的对称轴是y轴,∴该抛物线的顶点坐标为(0,﹣3),故选:A.【点睛】本题考查了抛物线的顶点坐标,找到抛物线的对称轴是解题的关键.4、C【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形AECF是菱形,AB=3,∴假设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC===,又∵AE=AB﹣BE=3﹣1=2,则菱形的面积是:AEBC=2.故选C.【点睛】本题考查折叠问题以及勾股定理.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.5、C【解析】根据反比例函数图象的增减性进行判断:根据反比例函数的性质:当时,图象分别位于第一、三象限,在每个象限内,y随x的增大而减小;当时,图象分别位于第二、四象限,在每个象限内,y随x的增大而增大.∵反比例函数的解析式中的,∴点A(1,y1)、B(1,y1)都位于第四象限.又∵1<1,∴y1>y1.故选C.6、B【分析】设BC=x,根据锐角三角函数分别用x表示出AC和CD,然后利用AC-CD=AD列方程即可求出BC,再根据锐角三角函数即可求出BD.【详解】解:设BC=x∵在△ABC中,∠A=45°,∠C=90°,∴AC=BC=x在Rt△BCD中,CD=∵AC-CD=AD,AD=1∴解得:即BC=在Rt△BCD中,BD=故选:B.【点睛】此题考查的是解直角三角形的应用,掌握用锐角三角函数解直角三角形是解决此题的关键.7、A【分析】利用切线长定理得出,然后再根据的周长即可求出PA的长.【详解】∵切于两点,切于点,交于∴的周长为∴故选:A.【点睛】本题主要考查切线长定理,掌握切线长定理是解题的关键.8、C【分析】由图形可知:第一层有1个花盆,第二层有1+6=7个花盆,第三层有1+6+12=19个花盆,第四层有1+6+12+18=37个花盆,…第n层有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)个花盆,要求第7层个数,由此代入求得答案即可.【详解】解:∵第一层有1个花盆,

第二层有1+6=7个花盆,

第三层有1+6+12=19个花盆,

第四层有1+6+12+18=37个花盆,

∴第n层有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)个花盆,

∴当n=7时,

∴花盆的个数是1+3×7×(7-1)=1.

故选:C.【点睛】此题考查图形的变化规律,解题关键在于找出数字之间的运算规律,利用规律解决问题.9、D【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看一个正方形被分成两部分,正方形中间有一条横向的虚线,如图:故选:D.【点睛】本题考查了几何体的三视图,从左边看得到的是左视图.10、C【分析】首先抛物线平移时不改变a的值,其中点的坐标平移规律是上加下减,左减右加,利用这个规律即可得到所求抛物线的顶点坐标,然后就可以求出抛物线的解析式.【详解】解:∵y=x2-4x-5=x2-4x+4-9=(x-2)2-9,∴顶点坐标为(2,-9),∴由点的平移可知:向左平移2个单位,再向上平移3个单位,得(1,-2),则原二次函数y=ax2+bx+c的顶点坐标为(1,-2),∵平移不改变a的值,∴a=1,∴原二次函数y=ax2+bx+c=x2-2,∴b=1,c=-2.故选:C.【点睛】此题主要考查了二次函数图象与平移变换,首先根据平移规律求出已知抛物线的顶点坐标,然后求出所求抛物线的顶点坐标,最后就可以求出原二次函数的解析式.11、B【分析】分别计算出各选项中方程根的判别式的值,找出大于0的选项即可得答案.【详解】A.方程x2+6x+9=0中,△=62-4×1×9=0,故方程有两个相等的实数根,不符合题意,B.方程中,△=(-1)2-4×1×0=1>0,故方程有两个不相等的实数根,符合题意,C.方程可变形为(x+1)2=-1<0,故方程没有实数根,不符合题意,D.方程中,△=(-2)2-4×1×3=-8<0,故方程没有实数根,不符合题意,故选:B.【点睛】本题考查一元二次方程根的判别式,对于一元二次方程ax2+bx+c=0(a≠0),根的判别式为△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.12、C【分析】根据平行线分线段成比例定理即可得出答案.【详解】∵AD∥BE∥CF,∴.∵AB=3,BC=6,DE=2,∴,∴EF=1.故选C.【点睛】本题考查了平行线分线段成比例定理,掌握定理的内容是解题的关键.二、填空题(每题4分,共24分)13、3π+9.【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,进而得出答案.【详解】解:连接BD,过点B作BN⊥AD于点N,∵将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,∴∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,则∠ABN=30°,故AN=3,BN=3,S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD=﹣(﹣×6×3)=3π+9.故答案为3π+9.【点睛】本题主要考查了扇形的面积求法以及等边三角形的判定与性质.正确得出△ABD是等边三角形是关键.14、1.【分析】根据题目中的函数解析式可得到点P的坐标,然后设出点M、点N的坐标,然后计算即可解答本题.【详解】解:∵二次函数y=1x1﹣4x+4=1(x﹣1)1+1,∴点P的坐标为(1,1),设点M的坐标为(a,1),则点N的坐标为(a,1a1﹣4a+4),∴===1,故答案为:1.【点睛】本题考查了二次函数与几何的问题,解题的关键是求出点P左边,设出点M、点N的坐标,表达出.15、4.【分析】连接AD,分别求出△ABC和扇形AMN的面积,相减即可得出答案.【详解】解:连接AD,∵⊙A与BC相切于点D,∴AD⊥BC,∵AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,BD=CD=,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=2,∴△ABC的面积=,扇形MAN得面积=,∴阴影部分的面积=.故答案为:.【点睛】本题考查的是圆中求阴影部分的面积,解题关键在于知道阴影部分面积等于三角形ABC的面积减去扇形AMN的面积,要求牢记三角形面积和扇形面积的计算公式.16、5cm或cm【分析】分两种情况:当4cm为直角边时,利用勾股定理求出第三边;当4cm为斜边时,利用勾股定理求出第三边.【详解】∵该三角形是直角三角形,∴①当4cm为直角边时,第三边长为cm;②当4cm为斜边时,第三边长为cm,故答案为:5cm或cm.【点睛】此题考查勾股定理,题中没有确定已知的两条边长是直角边或是斜边,故应分情况讨论,避免漏解.17、10【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R−2)2,解得R=5,∴该光盘的直径是10cm.故答案为:10.【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.18、【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.【详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,所以选出的2名同学刚好是一男一女的概率=.故答案为:.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.三、解答题(共78分)19、(1)见解析;(2)CB=2AB;(3)【分析】(1)利用平行线的性质以及角的等量代换求证即可;(2)在BE边上取点H,使BH=AE,可证明△ABH≌△DAE,△ABE∽△ACB,利用相似三角形的性质从而得出结论;(3)连接BD交AC于点Q,过点A作AK⊥BD于点K,得出,通过证明△ADK∽△DBC得出∠BDC=∠AKD=90°,再证DF=FQ,设AD=a,因此有DF=FC=QF=ka,再利用相似三角形的性质得出AC=3ka,,,从而得出答案.【详解】解:(1)∵∠BAD=∠BEC∠BAD=∠BAE+∠EAD∠BEC=∠ABE+BAE∴∠EAD=∠ABE∵AD∥BC∴∠EAD=∠ACB∴∠ACB=∠ABE(2)在BE边上取点H,使BH=AE∵AB=AD∴△ABH≌△DAE∴∠AHB=∠AED∵∠AHB+∠AHE=180°∠AED+∠DEC=180°∴∠AHE=∠DEC∵∠BEC=2∠DEC∠BEC=∠HAE+∠AHE∴∠AHE=∠HAE∴AE=EH∴BE=2AE∵∠ABE=∠ACB∠BAE=∠CAB∴△ABE∽△ACB∴∴CB=2AB;(3)连接BD交AC于点Q,过点A作AK⊥BD于点K∵AD=AB∴∠AKD=90°∵∴∵AD∥BC∴∠ADK=∠DBC∴△ADK∽△DBC∴∠BDC=∠AKD=90°∵DF=FC∴∠FDC=∠DFC∵∠BDC=90°∴∠FDC+∠QDF=90°∠DQF+∠DCF=90°∴DF=FQ设AD=a∴DF=FC=QF=ka∵AD∥BC∴∠DAQ=∠QCB∠ADQ=∠QBC∴△AQD∽△CQB∴∴AQ=ka=QF=CF∴AC=3ka∵△ABE∽△ACB∴∴同理△AFD∽△CFG∴.【点睛】本题是一道关于相似的综合题目,难度较大,根据题目作出合适的辅助线是解此题的关键,解决此题还需要较强的数形结合的能力以及较强的计算能力.20、或.【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=7-x,又折叠图形可得AD=AD′=5,∴x2+(7-x)2=25,解得x=3或1,即MD′=3或1.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7-3=1,D′N=5-3=2,EN=1-a,∴a2=22+(1-a)2,解得a=,即DE=,②当MD′=1时,AM=7-1=3,D′N=5-1=1,EN=3-a,∴a2=12+(3-a)2,解得a=,即DE=.故答案为:或.【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.21、(1)当0<t<4时,CP=4﹣t,当4≤t<8时,CP=t﹣4;(1);(3)S=;(4)或【分析】(1)分两种情形分别求解即可.(1)根据PA+PC=4,构建方程即可解决问题.(3)分两种情形:如图1中,当0<t≤时,重叠部分是正方形PQRS,当4<t<8时,重叠部分是△PQB,分别求解即可.(4)设直线CS交AB于E.分两种情形:如图4﹣1中,当AE=AB=时,满足条件.如图4﹣1中,当AE=AB时,满足条件.分别求解即可解决问题.【详解】解:(1)当0<t<4时,∵AC=4,AP=t,∴PC=AC﹣AP=4﹣t;当4≤t<8时,CP=t﹣4;(1)如图1中,点S落在BC边上,∵PA=t,AQ=QP,∠AQP=90°,∴AQ=PQ=PS=t,∵CP=CS,∠C=90°,∴PC=CS=t,∵AP+PC=BC=4,∴t+t=4,解得t=.(3)如图1中,当0<t≤时,重叠部分是正方形PQRS,S=(t)1=t1.当4<t<8时,重叠部分是△PQB,S=(8﹣t)1.综上所述,S=.(4)设直线CS交AB于E.如图4﹣1中,当AE=AB=时,满足条件,∵PS∥AE,∴,∴,解得t=.如图4﹣1中,当AE=AB时,满足条件.同法可得:,解得t=,综上所述,满足条件的t的值为或.【点睛】此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,以及正方形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22、菱形的高是9.6cm,面积是96cm1.【解析】根据菱形的对角线互相垂直平分,利用勾股定理求出AC与BD的长,再由菱形面积公式求出所求即可.【详解】解:∵BD:AC=3:4,∴设BD=3x,AC=4x,∴BO=,AO=1x,又∵AB1=BO1+AO1,∴AB=x,∵菱形的周长是40cm,∴AB=40÷4=10cm,即x=10,∴x=4,∴BD=11cm,AC=16cm,∴S▱ABCD=BD•AC=×11×16=96(cm1),又∵S▱ABCD=AB•h,∴h==9.6(cm),答:菱形的高是9.6cm,面积是96cm1.【点睛】此题考查了菱形的性质,勾股定理,熟练掌握菱形的性质是解本题的关键.23、(1)(2)【解析】试题分析:(1)连结BC,作O′D⊥BC于D,根据旋转变换的性质求出∠CBA′的度数,根据弧长公式计算即可;(2)根据扇形面积公式、三角形面积公式,结合图形计算即可.试题解析:(1)连结BC,作OD⊥BC于D,可求得∠BO′C=120,O′D=5,的长为(2)24、(1)证明见解析;(2)证明见解析.【解析】(1)连接OD,由角平分线的定义得到∠CAD=∠BAD,根据等腰三角形的性质得到∠BAD=∠ADO,求得∠CAD=∠ADO,根据平行

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论