福建省三明市名校2022年数学九年级第一学期期末学业质量监测试题含解析_第1页
福建省三明市名校2022年数学九年级第一学期期末学业质量监测试题含解析_第2页
福建省三明市名校2022年数学九年级第一学期期末学业质量监测试题含解析_第3页
福建省三明市名校2022年数学九年级第一学期期末学业质量监测试题含解析_第4页
福建省三明市名校2022年数学九年级第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若方程(m﹣1)x2﹣4x=0是关于x的一元二次方程,则m的取值范围是()A.m≠1 B.m=1 C.m≠0 D.m≥12.关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣4)B.图象是轴对称图形,但不是中心对称图形C.无论x取何值时,y随x的增大而增大D.点(,﹣8)在该函数的图象上3.在Rt△ABC中,∠C=90°,AB=10,sin∠B=,则BC=()A.15 B.6 C.9 D.84.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为,则可列方程()A. B. C.D.5.已知点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数y=-的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是()A.y1<y3<y2 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y16.下列几何体中,主视图是三角形的是()A. B. C. D.7.如图所示,抛物线y=ax2-x+c(a>0)的对称轴是直线x=1,且图像经过点(3,0),则a+c的值为(

)A.0 B.-1 C.1 D.28.若是一元二次方程的两个实数根,则的值为()A. B. C. D.9.如图,点在上,,则的半径为()A.3 B.6 C. D.1210.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数 B.众数 C.中位数 D.方差二、填空题(每小题3分,共24分)11.如图,在□ABCD中,E、F分别是AD、CD的中点,EF与BD相交于点M,若△DEM的面积为1,则□ABCD的面积为________.12.(2016湖北省咸宁市)如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为.其中正确的是________(把你认为正确结论的序号都填上).13.函数和在第一象限内的图象如图,点是的图象上一动点,轴于点,交的图象于点;轴于点,交的图象于点,则四边形的面积为______.14.某工厂的产品每50件装为一箱,现质检部门对100箱产品进行质量检查,每箱中的次品数见表:次品数012345箱数5014201042该工厂规定:一箱产品的次品数达到或超过6%,则判定该箱为质量不合格的产品箱.若在这100箱中随机抽取一箱,抽到质量不合格的产品箱概率为_______15.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.16.如图,在中,,按以下步骤作图:在上分别截取使分别以为圆心,以大于的长为半径作弧,两弧在内交于点③作射线交于点,则_______.17.某校开展“节约每滴水”活动,为了了解开展活动一个月以来节约用水情况,从九年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况,如下表:节水量()0.20.250.30.4家庭数(个)4637请你估计这400名同学的家庭一个月节约用水的总量大约是_________.18.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为__________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,反比例函数的图象与一次函数的图象的一个交点为.(1)求这个反比例函数的解析式;(2)求两个函数图像的另一个交点的坐标;并根据图象,直接写出关于的不等式的解集.

20.(6分)如图,已知等边,以边为直径的圆与边,分别交于点、,过点作于点.(1)求证:是的切线;(2)过点作于点,若等边的边长为8,求的长.21.(6分)如图,在平面直角坐标系中,一次函数的图象与反比例函数()的图象交于,两点,已知点坐标为.(1)求一次函数和反比例函数的解析式;(2)连接,,求的面积.22.(8分)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.23.(8分)如图,已知:在△ABC中,AB=AC,BD是AC边上的中线,AB=13,BC=10,(1)求△ABC的面积;(2)求tan∠DBC的值.24.(8分)如图,在矩形ABCD中,AB=10,动点E、F分别在边AB、AD上,且AF=AE.将△AEF绕点E顺时针旋转10°得到△A'EF',设AE=x,△A'EF'与矩形ABCD重叠部分面积为S,S的最大值为1.(1)求AD的长;(2)求S关于x的函数解析式,并写出自变量x的取值范围.25.(10分)因2019年下半年猪肉大涨,某养猪专业户想扩大养猪场地,但为了节省材料,利用一面墙(墙足够长)为一边,用总长为120的材料围成了如图所示①②③三块矩形区域,而且这三块矩形区域的面积相等,设的长度为(),矩形区域的面积().(1)求与之间的函数表达式,并注明自变量的取值范围.(2)当为何值时,有最大值?最大值是多少?26.(10分)(1)解方程:.(2)已知:关于x的方程①求证:方程有两个不相等的实数根;②若方程的一个根是,求另一个根及k值.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程可得m−1≠0,再解即可.【详解】解:由题意得:m﹣1≠0,解得:m≠1,故选:A.【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2、D【分析】反比例函数的图象时位于第一、三象限,在每个象限内,y随x的增大而减小;时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【详解】∵当时,∴点(,﹣8)在该函数的图象上正确,故A、B、C错误,不符合题意.故选:D.【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.3、D【分析】首先根据正弦函数的定义求得AC的长,然后利用勾股定理求得BC的长.【详解】解:∴直角△ABC中,故选:D.【点睛】本题考查的是锐角三角形的正弦函数,理解熟记正弦三角函数定义是解决本题的关键.4、D【解析】试题解析:设从2008年起我省森林覆盖率的年平均增长率为x,依题意得60.05%(1+x)2=1%.

即60.05(1+x)2=1.

故选D.5、C【分析】根据反比例函数为y=-,可得函数图象在第二、四象限,在每个象限内,y随着x的增大而增大,进而得到y1,y2,y3的大小关系.【详解】解:∵反比例函数为y=-,∴函数图象在第二、四象限,在每个象限内,y随着x的增大而增大,又∵x1<x2<0<x3,∴y1>0,y2>0,y3<0,且y1<y2,∴y3<y1<y2,故选:C.【点睛】本题主要考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.6、C【分析】主视图是从正面看所得到的图形,据此判断即可.【详解】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.【点睛】此题主要考查了几何体的三视图,解此题的关键是熟练掌握几何体的主视图.7、B【解析】∵抛物线的对称轴是直线,且图像经过点(3,0),∴,解得:,∴.故选B.8、C【分析】由一元二次方程根与系数的关系可得x1+x2=-3,x1·x2=2,利用完全平方公式即可求出答案.【详解】∵是一元二次方程的两个实数根,∴x1+x2=-3,x1·x2=2,∴=(x1+x2)2-2x1·x2=9-4=5,故选:C.【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个实数根为,那么x1+x2=,x1·x2=,熟练掌握韦达定理是解题关键.9、B【分析】连接OB、OC,如图,根据圆周角定理可得,进一步即可判断△OCB是等边三角形,进而可得答案.【详解】解:连接OB、OC,如图,则OB=OC,∵,∴,∴△OCB是等边三角形,∴OB=BC=6.故选:B.【点睛】本题考查了圆周角定理和等边三角形的判定和性质,属于基础题型,熟练掌握上述性质是解题关键.10、D【解析】A.∵原平均数是:(1+2+3+3+4+1)÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3)÷7=3;∴平均数不发生变化.B.∵原众数是:3;添加一个数据3后的众数是:3;∴众数不发生变化;C.∵原中位数是:3;添加一个数据3后的中位数是:3;∴中位数不发生变化;D.∵原方差是:;添加一个数据3后的方差是:;∴方差发生了变化.故选D.点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.二、填空题(每小题3分,共24分)11、16【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF,△DEM∽△BHM∴,∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵∴∴∴∴∴∴∴∵四边形ABCD是平行四边形∴故答案为:16.12、①②.【解析】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF.在△BOE与△COF中,∵OB=OC,∠BOE=∠COF,OE=OF,∴△BOE≌△COF,∴BE=CF,∴,①正确;②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=15°,∴△BOG≌△COH,∴OG=OH.∵∠GOH=90°,∴△OGH是等腰直角三角形,②正确;③如图所示,∵△HOM≌△GON,∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;④∵△BOG≌△COH,∴BG=CH,∴BG+BH=BC=1.设BG=x,则BH=1﹣x,则GH====,∴其最小值为,∴△GBH周长的最小值=GB+BH+GH=1+,D错误.故答案为①②.13、3【解析】根据反比例函数系数k的几何意义可分别求得△OBD、△OAC、矩形PDOC的面积,据此可求出四边形PAOB的面积.【详解】解:如图,

∵A、B是反比函数上的点,

∴S△OBD=S△OAC=,∵P是反比例函数上的点,

∴S矩形PDOC=4,

∴S四边形PAOB=S矩形PDOC-S△ODB--S△OAC=4--=3,故答案是:3.【点睛】本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.14、【分析】由表格中的数据可知算出抽到质量不合格的产品箱频率后,利用频率估计概率即可求得答案.【详解】解:∵一箱产品的次品数达到或超过6%,则判定该箱为质量不合格的产品箱.∴质量不合格的产品应满足次品数量达到:∴抽到质量不合格的产品箱频率为:所以100箱中随机抽取一箱,抽到质量不合格的产品箱概率:故答案为:.【点睛】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,由此可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率的近似值,随着实验次数的增多,值越来越精确.15、【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】解:如图,连接BD.∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF﹣S△ABD=.故答案是:.【点睛】此题主要考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形EBFD的面积等于△ABD的面积是解题关键.16、【分析】由已知可求BC=6,作,由作图知平分,依据知,再证得可知BE=2,设,则,在中得,解之可得答案.【详解】解:如图所示,过点作于点,由作图知平分,,,,,,,∴,∵在中,,,设,则在中∴,解得:,即,故选:.【点睛】本题综合考查了角平分线的尺规作图及角平分线的性质、勾股定理等知识,利用勾股定理构建方程求解是解题关键.17、1【分析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【详解】解:20名同学各自家庭一个月平均节约用水是:

(0.2×4+0.25×6+0.3×3+0.4×7)÷20=0.3(m3),

因此这400名同学的家庭一个月节约用水的总量大约是:

400×0.3=1(m3),

故答案为:1.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数.18、1【分析】袋中黑球的个数为,利用概率公式得到,然后利用比例性质求出即可.【详解】解:设袋中黑球的个数为,根据题意得,解得,即袋中黑球的个数为个.故答案为:1.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.三、解答题(共66分)19、(1)(2)或【分析】(1)把A坐标代入一次函数解析式求出a的值,确定出A的坐标,再代入反比例解析式求出k的值,即可确定出反比例解析式;(2)解析式联立求得B的坐标,然后根据图象即可求得.【详解】解:(1)∵点在一次函数图象上,∴∴∴∵点在反比例函数的图象上,∴.∴(2)由或∴由图象可知,的解集是或.

【点睛】本题考查了反比例函数与一次函数的交点问题、一次函数图象上点的坐标特征以及反比例函数图象上点的坐标特征,根据一次函数图象上点的坐标特征求出点A、B的坐标是解题的关键.20、(1)证明见解析;(2).【分析】(1)连接,通过证明是等边三角形可得,从而证明,得证,即可证明是的切线;(2)根据三角函数求出FC、HC的长度,然后根据勾股定理即可求出的长.【详解】(1)证明:连接.是等边三角形,是等边三角形,,与相切(2)在直角三角形中,【点睛】本题考查了圆和三角形的综合问题,掌握圆的切线的性质、锐角三角函数的定义、勾股定理是解题的关键.21、(1)一次函数的解析式为,反比例函数的解析式为;(2)6【分析】(1)由点的坐标利用一次函数、反比例函数图象上点的坐标特征即可得出反比例函数解析式;(2)联立一次函数、反比例函数得方程,解方程组即可求出AB点坐标,求出直线与轴的交点坐标后,即可求出和,继而求出的面积.【详解】解:(1)将代入解析式与得,,,一次函数的解析式为,反比例函数的解析式为;(2)解方程组得或,,设直线与轴,轴交于,点,易得,即,.【点睛】本题考查了反比例函数与一次函数的交点问题、待定系数法求一次函数和反比例函数解析式以及三角形的面积,解题的关键是:根据点的坐标利用待定系数法求出函数解析式;利用分割图形求面积法求出的面积.22、(1)证明见解析;(2)【分析】(1)连接OE,BE,根据已知条件证明CD为⊙O的切线,然后再根据切线长定理即可证明DA=DE;(2)如图,连接OC,过点D作DF⊥BC于点F,根据S阴影部分=S四边形BCEO﹣S扇形OBE,利用分割法即可求得阴影部分的面积.【详解】(1)如图,连接OE、BE,∵OB=OE,∴∠OBE=∠OEB.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°;∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE;(2)如图,连接OC,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD=4,∵CF==2,∴BC﹣AD=2,∴BC=3,在直角△OBC中,tan∠BOC==,∴∠BOC=60°.在△OEC与△OBC中,,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°,∴S阴影部分=S四边形BCEO﹣S扇形OBE=2×BC•OB﹣=9﹣3π.【点睛】本题考查了切线的判定与性质、切线长定理,扇形的面积等,正确添加辅助线,熟练运用相关知识是解题的关键.23、(1)60;(2).【分析】(1)作等腰三角形底边上的高AH并根据勾股定理求出,再根据三角形面积公式即可求解;(2)方法一:作等腰三角形底边上的高AH并根据勾股定理求出,与BD交点为E,则E是三角形的重心,再根据三角形重心的性质求出EH,∠DBC的正切值即可求出.方法二:过点A、D分别作AH⊥BC、DF⊥BC,垂足分别为点H、F,先根据勾股定理求出AH的长,再根据三角形中位线定理求出DF的长,BF的长就等于BC的,∠DBC的正切值即可求出.【详解】解:(1)过点A作AH⊥BC,垂足为点H,交BD于点E.∵AB=AC=13,AH⊥BC,BC=10∴BH=5在Rt△ABH中,AH==12,∴△ABC的面积=;(2)方法一:过点A作AH⊥BC,垂足为点H,交BD于点E.∵AB=AC=13,AH⊥BC,BC=10∴BH=5在Rt△ABH中,AH==12∵BD是AC边上的中线所以点E是△ABC的重心∴EH==4,∴在Rt△EBH中,tan∠DBC==.方法二:过点A、D分别作AH⊥BC、DF⊥BC,垂足分别为点H、F.∵AB=AC=13,AH⊥BC,BC=10∴BH=CH=5在Rt△ABH中,AH==12∵AH⊥BC、DF⊥BC∴AH∥DF,D为AC中点,∴DF=AH=6,∴BF=∴在Rt△DBF中,tan∠DBC==.【点睛】本题主要考查解直角三角形,掌握勾股定理及锐角三角函数的定义是解题的关键.24、(1);(2)【分析】(1)根据题意,当在上时,,则重叠的面积有最大值1,根据面积公式,即可求出AD的长度(2)根据题意,需要对x的值进行讨论分析,分成三种情况进行解题,分别求出S与x的关系式,即可得到答案.【详解】(1)如图,当在上时,,∵,,∴.解方程,得:或(舍去),∴.(2)①

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论