安徽省宿州市第五中学2022-2023学年数学九上期末学业质量监测模拟试题含解析_第1页
安徽省宿州市第五中学2022-2023学年数学九上期末学业质量监测模拟试题含解析_第2页
安徽省宿州市第五中学2022-2023学年数学九上期末学业质量监测模拟试题含解析_第3页
安徽省宿州市第五中学2022-2023学年数学九上期末学业质量监测模拟试题含解析_第4页
安徽省宿州市第五中学2022-2023学年数学九上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知二次函数的图象如图所示,分析下列四个结论:①abc<0;②b2-4ac>0;③;④a+b+c<0.其中正确的结论有()A.1个 B.2个 C.3个 D.4个2.以下给出的几何体中,主视图是矩形,俯视图是圆的是()A. B. C. D.3.平面直角坐标系中,抛物线经变换后得到抛物线,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向左平移4个单位 D.向右平移4个单位4.如图,△ABC内接于⊙O,OD⊥AB于D,OE⊥AC于E,连结DE.且DE=,则弦BC的长为()A. B.2 C.3 D.5.方程2x(x﹣3)=5(x﹣3)的根是()A.x= B.x=3 C.x1=,x2=3 D.x1=﹣,x2=﹣36.如图,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为()A. B. C. D.7.若点A(-3,m),B(3,m),C(-1,m+n²+1)在同一个函数图象上,这个函数可能是()A.y=x+2 B. C.y=x²+2 D.y=-x²-28.如图,▱ABCD的对角线AC,BD交于点O,已知,,,则的周长为A.13 B.17 C.20 D.269.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.100 B.50 C.20 D.1010.下列二次函数中,如果函数图像的对称轴是轴,那么这个函数是()A. B. C. D.11.对于二次函数,下列描述错误的是().A.其图像的对称轴是直线=1 B.其图像的顶点坐标是(1,-9)C.当=1时,有最小值-8 D.当>1时,随的增大而增大12.圆锥的底面半径是,母线为,则它的侧面积是()A. B. C. D.二、填空题(每题4分,共24分)13.函数是关于反比例函数,则它的图象不经过______的象限.14.已知,则的值是_______.15.如图,是等腰直角三角形,,以BC为边向外作等边三角形BCD,,连接AD交CE于点F,交BC于点G,过点C作交AB于点下列结论:;∽;;则正确的结论是______填序号16.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=-(k>0)图象上的两个点,则y1与y2的大小关系为_____.17.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.18.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.三、解答题(共78分)19.(8分)已知关于x的一元二次方程.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为,,且,求m的值.20.(8分)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.21.(8分)如图,函数y=2x和y=﹣x+4的图象相交于点A,(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥﹣x+4的解集.22.(10分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长.23.(10分)如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.(1)求抛物线的解析式.(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.24.(10分)如图,在Rt△ABC中,∠A=90°,AC=3,AB=4,动点P从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,点Q为线段AP的中点,过点P向上作PM⊥AB,且PM=3AQ,以PQ、PM为边作矩形PQNM.设点P的运动时间为t秒.(1)线段MP的长为(用含t的代数式表示).(2)当线段MN与边BC有公共点时,求t的取值范围.(3)当点N在△ABC内部时,设矩形PQNM与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)当点M到△ABC任意两边所在直线距离相等时,直接写出此时t的值.25.(12分)某商店如果将进货价为8元的商品按每件11元售出,每天可销售211件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价1.5元,其销量减少11件.(1)若涨价x元,则每天的销量为____________件(用含x的代数式表示);(2)要使每天获得711元的利润,请你帮忙确定售价.26.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.

参考答案一、选择题(每题4分,共48分)1、B【解析】①由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;

②由抛物线与x轴有两个交点判断即可;③由,a<1,得到b>2a,所以2a-b<1;④由当x=1时y<1,可得出a+b+c<1.【详解】解:①∵二次函数图象开口向下,对称轴在y轴左侧,与y轴交于正半轴,

∴a<1,,c>1,∴b<1,

∴abc>1,结论①错误;

②∵二次函数图象与x轴有两个交点,

∴b2-4ac>1,结论②正确;③∵,a<1,

∴b>2a,

∴2a-b<1,结论③错误;

④∵当x=1时,y<1;

∴a+b+c<1,结论④正确.

故选:B.【点睛】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠1)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.2、D【分析】根据几何体的正面看得到的图形,可得答案.【详解】A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选D.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.3、B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】解:,顶点坐标是(-1,-4).

,顶点坐标是(1,-4).

所以将抛物线向右平移2个单位长度得到抛物线,

故选:B.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律和变化特点.4、C【分析】由垂径定理可得AD=BD,AE=CE,由三角形中位线定理可求解.【详解】解:∵OD⊥AB,OE⊥AC,∴AD=BD,AE=CE,∴BC=2DE=2×=3故选:C.【点睛】本题考查了三角形的外接圆与外心,三角形的中位线定理,垂径定理等知识,灵活运用这些性质进行推理是本题的关键.5、C【解析】利用因式分解法解一元二次方程即可.解:方程变形为:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,∴x﹣3=0或2x﹣5=0,∴x1=3,x2=.故选C.6、C【分析】连接BH,BH1,先证明△OBH≌△O1BH1,再根据勾股定理算出BH,再利用扇形面积公式求解即可.【详解】∵O、H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,∴△OBH≌△O1BH1,利用勾股定理可求得BH=,所以利用扇形面积公式可得.故选C.【点睛】本题考查全等三角形的判定及性质、勾股定理、扇形面积的计算,利用全等对面积进行等量转换方便计算是关键.7、D【分析】先根据点A、B的坐标可知函数图象关于y轴对称,排除A、B选项;再根据点C的纵坐标大于点A的纵坐标,结合C、D选项,根据y随x的增减变化即可判断.【详解】函数图象关于y轴对称,因此A、B选项错误又再看C选项,的图象性质:当时,y随x的增大而减小,因此错误D选项,的图象性质:当时,y随x的增大而增大,正确故选:D.【点睛】本题考查了二次函数图象的性质,掌握图象的性质是解题关键.8、B【分析】由平行四边形的性质得出,,,即可求出的周长.【详解】四边形ABCD是平行四边形,,,,的周长.故选B.【点睛】本题主要考查了平行四边形的性质,并利用性质解题平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分.9、B【分析】圆锥的侧面积为半径为10的半圆的面积.【详解】解:圆锥的侧面积=半圆的面积=,故选B.【点睛】解决本题的关键是把圆锥的侧面积转换为规则图形的面积.10、C【分析】由已知可知对称轴为x=0,从而确定函数解析式y=ax2+bx+c中,b=0,由选项入手即可.【详解】二次函数的对称轴为y轴,

则函数对称轴为x=0,

即函数解析式y=ax2+bx+c中,b=0,

故选:C.【点睛】此题考查二次函数的性质,熟练掌握二次函数的图象及性质是解题的关键.11、C【分析】将解析式写成顶点式的形式,再依次进行判断即可得到答案.【详解】=,∴图象的对称轴是直线x=1,故A正确;顶点坐标是(1,-9),故B正确;当x=1时,y有最小值-9,故C错误;∵开口向上,∴当>1时,随的增大而增大,故D正确,故选:C.【点睛】此题考查函数的性质,熟记每种函数解析式的性质是解题的关键.12、A【分析】根据圆锥的侧面积=底面周长×母线长计算.【详解】圆锥的侧面面积=×6×5=15cm1.故选:A.【点睛】本题考查圆锥的侧面积=底面周长×母线长,解题的关键是熟知公式的运用.二、填空题(每题4分,共24分)13、第一、三象限【解析】试题解析:函数是关于的反比例函数,解得:比例系数它的图象在第二、四象限,不经过第一、三象限.故答案为第一、三象限.14、【分析】由可设a=k,b=3k,代入中即可.【详解】解:∵,∴设a=k,b=3k,代入中,==.故答案为:.【点睛】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型.15、②③④【分析】根据题意证明∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC即可证明②正确,①错误,在△AEF中利用特殊三角函数即可证明③正确,在Rt△AOC中,利用即可证明④正确.【详解】解:由题可知,∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC,∴∠ACD=150°,∴∠CDA=∠CAD=15°,∴∠FCG=∠BDG=45°,∴,②正确,①错误,∵易证∠FAE=30°,设EF=x,则AE=CE=,∴,③正确,设CH与AD交点为O,易证∠FCO=30°,设OF=y,则CF=2y,由③可知,EF=()y,∴AF=()y,在Rt△AOC中,.故②③④正确.【点睛】本题考查了相似三角形的判定,特殊的直角三角形,三角函数的简单应用,难度较大,熟知特殊三角函数值是解题关键.16、y1<y1【分析】根据双曲线所在的象限,得出y随x的增大而增大,即可判断.【详解】解:∵k>0,∴﹣k<0,因此在每个象限内,y随x的增大而增大,∵﹣4<﹣1,∴y1<y1,故答案为:y1<y1.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是熟知反比例函数在各象限的增减性.17、-1【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.18、2【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)的值,取其最大值即可得出答案.【详解】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,依题意,得:5x+7×2y+10y=346,∴x=,∵x,y均为非负整数,∴346﹣24y为5的整数倍,∴y的尾数为4或9,∴,,,∴x+y+2y=2或53或1.∵2>53>1,∴最多可以购买2件纪念品.故答案为:2.【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x,y的非负整数解,是解题的关键.三、解答题(共78分)19、(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值.试题解析:(1)证明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵,方程的两实根为,,且,∴,,∴,∴(m﹣3)1﹣3×(﹣m)=7,解得,m1=1,m1=1,即m的值是1或1.20、(1);(2)π﹣.【分析】(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=AO=OE,根据勾股定理列方程求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.【详解】解:(1)连接OF,∵直径AB⊥DE,∴CE=DE=1.∵DE平分AO,∴CO=AO=OE.设CO=x,则OE=2x.由勾股定理得:12+x2=(2x)2.x=.∴OE=2x=.即⊙O的半径为.(2)在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF==π.∵∠EOF=2∠D=90°,OE=OF=SRt△OEF==.∴S阴影=S扇形OEF﹣SRt△OEF=π﹣.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系.21、(1)A的坐标为(,3);(2)x≥.【解析】试题分析:(1)联立两直线解析式,解方程组即可得到点A的坐标;(2)根据图形,找出点A右边的部分的x的取值范围即可.试题解析:(1)由,解得:,∴A的坐标为(,3);(2)由图象,得不等式2x≥-x+4的解集为:x≥.22、详见解析.【分析】连接MA并延长,连接NC并延长,两延长线相交于一点O,点O是路灯所在的点,再连接OE,并延长OE交地面于点G,FG即为所求.【详解】如图所示,FG即为所求.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影;中心投影的光线特点是从一点出发的投射线.23、(1)y=﹣x2﹣2x+3;(2)点P(,);(3)符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【分析】(1)令y=0,求出点A的坐标,根据抛物线的对称轴是x=﹣1,求出点C的坐标,再根据待定系数法求出抛物线的解析式即可;(2)设点P(m,﹣m2﹣2m+3),利用抛物线与直线相交,求出点B的坐标,过点P作PF∥y轴交直线AB于点F,利用S△ABP=S△PBF+S△PFA,用含m的式子表示出△ABP的面积,利用二次函数的最大值,即可求得点P的坐标;(3)求出点E的坐标,然后求出直线BC、直线BE、直线CE的解析式,再根据以点B、E、C、D为顶点的四边形是平行四边形,得到直线D1D2、直线D1D3、直线D2D3的解析式,即可求出交点坐标.【详解】解:(1)令y=0,可得:x﹣1=0,解得:x=1,∴点A(1,0),∵抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,∴﹣1×2﹣1=﹣3,即点C(﹣3,0),∴,解得:∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵点P在直线AB上方的抛物线上运动,∴设点P(m,﹣m2﹣2m+3),∵抛物线与直线y=x﹣1交于A、B两点,∴,解得:,∴点B(﹣4,﹣5),如图,过点P作PF∥y轴交直线AB于点F,则点F(m,m﹣1),∴PF=﹣m2﹣2m+3﹣m+1=﹣m2﹣3m+4,∴S△ABP=S△PBF+S△PFA=(﹣m2﹣3m+4)(m+4)+(﹣m2﹣3m+4)(1﹣m)=-(m+)2+,∴当m=时,P最大,∴点P(,).(3)当x=﹣1时,y=﹣1﹣1=﹣2,∴点E(﹣1,﹣2),如图,直线BC的解析式为y=5x+15,直线BE的解析式为y=x﹣1,直线CE的解析式为y=﹣x﹣3,∵以点B、C、E、D为顶点的四边形是平行四边形,∴直线D1D3的解析式为y=5x+3,直线D1D2的解析式为y=x+3,直线D2D3的解析式为y=﹣x﹣9,联立得D1(0,3),同理可得D2(﹣6,﹣3),D3(﹣2,﹣7),综上所述,符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【点睛】本题考查二次函数的综合应用,解决第(2)小题中三角形面积的问题时,找到一条平行或垂直于坐标轴的边是关键;对于第(3)小题,要注意分类讨论、数形结合的运用,不要漏解.24、(1)3t;(2)满足条件的t的值为≤t≤;(3)S=;(4)满足条件的t的值为或或.【分析】(1)根据路程、速度、时间的关系再结合题意解答即可.(2)分别出点M、N落在BC上时的t的范围即可;(3)分重叠部分是矩形PQNM和五边形PQNEF两种情况进行解答即可;(4)按以下三种情形:当点M落在∠ABC的角平分线BF上时,满足条件.作FELBC于E;当点M落在∠ACB的角平分线上时,满足条件作EFLBC于F;当点M落在△ABC的∠ACB的外角的平分线上时,满足条件.分别求解即可解答.【详解】解:(1)由题意AP=2t,AQ=PQ=t,∵PM=3PQ,∴PM=3t.故答案为3t.(2)如图2﹣1中,当点M落在BC上时,∵PM∥AC,∴,∴,解得t=如图2﹣2中,当点N落在BC上时,∵NQ∥AC,∴,∴,解得t=,综上所述,满足条件的t的值为≤t≤.(3)如图3﹣1中,当0<t≤时,重叠部分是矩形PQNM,S=3t2如图3﹣2中,当<t≤时,重叠部分是五边形PQNEF.S=S矩形PQNM﹣S△EFM=3t2﹣•[3t﹣(4﹣2t)]•[3t﹣(4﹣2t)]=﹣t2+18t﹣6,综上所述,.(4)如图4﹣1中,当点M落在∠ABC的角平分线BF上时,满足条件.作FE⊥BC于E.∵∠FAB=∠FEB=90°,∠FBA=∠FBE,BF=BF,∴△BFA≌△BFE(AAS),∴AF=EF,AB=BE=4,设AF=EF=x,∵∠A=90°,AC=3,AB=4,∴BC==5,∴EC=BC﹣BE=5﹣4=1,在Rt△EFC中,则有x2+12=(3﹣x)2,解得x=,∵PM∥AF,∴,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论