2023届四川省遂宁市蓬溪县数学九上期末达标测试试题含解析_第1页
2023届四川省遂宁市蓬溪县数学九上期末达标测试试题含解析_第2页
2023届四川省遂宁市蓬溪县数学九上期末达标测试试题含解析_第3页
2023届四川省遂宁市蓬溪县数学九上期末达标测试试题含解析_第4页
2023届四川省遂宁市蓬溪县数学九上期末达标测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列二次根式中,与是同类二次根式的是()A. B. C. D.2.如图,在平行四边形中,、是上两点,,连接、、、,添加一个条件,使四边形是矩形,这个条件是()A. B. C. D.3.在x2□2xy□y2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是()A.1 B. C. D.4.如图,菱形中,过顶点作交对角线于点,已知,则的大小为()A. B. C. D.5.一元二次方程x2﹣16=0的根是(

)A.x=2

B.x=4

C.x1=2,x2=﹣2

D.x1=4,x2=﹣46.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tanC的值是()A.2 B. C.1 D.7.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则=()A. B. C. D.8.甲、乙两位同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,给出的统计图如图所示,则符合这一结果的试验可能是()A.掷一枚硬币,出现正面朝上的概率B.掷一枚硬币,出现反面朝上的概率C.掷一枚骰子,出现点的概率D.从只有颜色不同的两个红球和一个黄球中,随机取出一个球是黄球的概率9.将二次函数的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为()A. B.C. D.10.对于题目“如图,在中,是边上一动点,于点,点在点的右侧,且,连接,从点出发,沿方向运动,当到达点时,停止运动,在整个运动过程中,求阴影部分面积的大小变化的情况"甲的结果是先增大后减小,乙的结果是先减小后增大,其中()A.甲的结果正确 B.乙的结果正确C.甲、乙的结果都不正确,应是一直增大 D.甲、乙的结果都不正确,应是一直减小二、填空题(每小题3分,共24分)11.在某一时刻,测得一根高为的竹竿的影长为,同时同地测得一栋楼的影长为,则这栋楼的高度为________.12.如图,为的弦,的半径为5,于点,交于点,且,则弦的长是_____.13.如图,直线l1∥l2∥l3,A、B、C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=3,且,则m+n的最大值为___________.14.如图,已知∠AOB=30°,在射线OA上取点O1,以点O1为圆心的圆与OB相切;在射线O1A上取点O2,以点O2为圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以点O3为圆心,O3O2为半径的圆与OB相切……,若⊙O1的半径为1,则⊙On的半径是______________.15.抛物线向右平移个单位,向上平移1个单位长度得到的抛物线解析式是_____16.如图,直线y=+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是_________.17.如图,,点、都在射线上,,,是射线上的一个动点,过、、三点作圆,当该圆与相切时,其半径的长为__________.18.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是______.三、解答题(共66分)19.(10分)在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).(1)求m的值及点A的坐标;(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.①当点E′落在该二次函数的图象上时,求AA′的长;②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;③当A′B+BE′取得最小值时,求点E′的坐标.20.(6分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2016年的绿色建筑面积约为950万平方米,2018年达到了1862万平方米.若2017年、2018年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2019年我市计划推行绿色建筑面积达到2400万平方米.如果2019年仍保持相同的年平均增长率,请你预测2019年我市能否完成计划目标?21.(6分)在锐角三角形中,已知,,的面积为,求的余弦值.22.(8分)如图,是的直径,点在上,平分,是的切线,与相交于点,与相交于点,连接.(1)求证:;(2)若,,求的长.23.(8分)如图,反比例函数与一次函数交于和两点.(1)根据题中所给的条件,求出一次函数和反比例函数的解析式.(2)结合函数图象,指出当时,的取值范围.24.(8分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16cm,请求出球的半径.25.(10分)一个箱子里有4瓶牛奶,其中有一瓶是过期的,且这4瓶牛奶的外包装完全相同.(1)现从这4瓶牛奶中随机拿1瓶,求恰好拿到过期牛奶的概率;(2)现从这4瓶牛奶中不放回地随机拿2瓶,求拿到的2瓶牛奶中恰好有过期牛奶的概率.26.(10分)如图,海南省三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(结果精确到0.1海里,参考数据:tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,≈1.414,≈1.732)

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:因为=2,所以与是同类二次根式,所以A正确;因为与不是同类二次根式,所以B错误;因为,所以与不是同类二次根式,所以B错误;因为,所以与不是同类二次根式,所以B错误;故选A.考点:同类二次根式2、A【分析】由平行四边形的性质可知:,,再证明即可证明四边形是平行四边形.【详解】∵四边形是平行四边形,∴,,∵对角线上的两点、满足,∴,即,∴四边形是平行四边形,∵,∴,∴四边形是矩形.故选A.【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.3、C【解析】能够凑成完全平方公式,则2xy前可是“-”,也可以是“+”,但y2前面的符号一定是:“+”,此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率为:.故答案为C点睛:让填上“+”或“-”后成为完全平方公式的情况数除以总情况数即为所求的概率.此题考查完全平方公式与概率的综合应用,注意完全平方公式的形式.用到的知识点为:概率=所求情况数与总情况数之比.4、D【分析】先说明ABD=∠ADC=∠CBD,然后再利用三角形内角和180°求出即可∠CBD度数,最后再用直角三角形的内角和定理解答即可.【详解】解:∵菱形ABCD∴AB=AD∴∠ABD=∠ADC∴∠ABD=∠CBD又∵∴∠CBD=∠BDC=∠ABD=∠ADB=(180°-134°)=23°∴=90°-23°=67°故答案为D.【点睛】本题主要考查了菱形的性质,解题的关键是掌握菱形的对角线平分每一组对角和三角形内角和定理.5、D【解析】本题考查了一元二次方程的解法,移项后即可得出答案.【详解】解:16=x2,x=±1.故选:D【点睛】本题考查了一元二次方程的解法,熟悉掌握一元二次方程的解法是解决本题的关键.6、B【分析】在直角三角形ACD中,根据正切的意义可求解.【详解】如图:在RtACD中,tanC.故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7、D【解析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC

∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即==.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.8、D【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A.掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B.掷一枚硬币,出现反面朝上的概率为,故此选项不符合题意;C.掷一枚骰子,出现点的概率为,故此选项不符合题意;D.从只有颜色不同的两个红球和一个黄球中,随机取出一个球是黄球的概率为,故此选项符合题意;故选:D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.9、B【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:.故选:B.【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10、B【分析】设PD=x,AB边上的高为h,求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:在中,∵,∴,设,边上的高为,则.∵,∴,∴,∴,∴,∴当时,的值随的增大而减小,当时,的值随的增大而增大,∴乙的结果正确.故选B.【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题,属于中考常考题型.二、填空题(每小题3分,共24分)11、1【分析】根据同一时刻物高与影长成正比即可得出结论.【详解】解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,∴,解得h=1(m).故答案为1.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.12、1【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.【详解】连接,∵半径是5,,∴,根据勾股定理,,∴,因此弦的长是1.【点睛】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.13、【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过作于,设,,,,,,,,,,即,,,,,即,,,,,当最大时,,,当时,,,的最大值为.故答案为:.【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m的函数解析式是解题的关键.14、2n−1【分析】作O1C、O2D、O3E分别⊥OB,易找出圆半径的规律,即可解题.【详解】解:作O1C、O2D、O3E分别⊥OB,∵∠AOB=30°,∴OO1=2CO1,OO2=2DO2,OO3=2EO3,∵O1O2=DO2,O2O3=EO3,∴圆的半径呈2倍递增,∴⊙On的半径为2n−1

CO1,∵⊙O1的半径为1,∴⊙O10的半径长=2n−1,故答案为:2n−1.【点睛】本题考查了圆切线的性质,考查了30°角所对直角边是斜边一半的性质,本题中找出圆半径的规律是解题的关键.15、【分析】根据图象的平移规律,可得答案.【详解】解:将抛物线向右平移个单位,向上平移1个单位长度得到的抛物线的解析式是将抛物线,

故答案为:.【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.16、(1,3)【分析】首先根据直线AB求出点A和点B的坐标,结合旋转的性质可知点B′的横坐标等于OA与OB的长度之和,而纵坐标等于OA的长,进而得出B′的坐标.【详解】解:y=-x+4中,令x=0得,y=4;令y=0得,-x+4=0,解得x=3,∴A(3,0),B(0,4).

由旋转可得△AOB≌△AO′B′,∠O′AO=90°,

∴∠B′O′A=90°,OA=O′A,OB=O′B′,∴O′B′∥x轴,

∴点B′的纵坐标为OA长,即为3;横坐标为OA+O′B′=OA+OB=3+4=1.

故点B′的坐标是(1,3),

故答案为:(1,3).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.17、【分析】圆C过点P、Q,且与相切于点M,连接CM,CP,过点C作CN⊥PQ于N并反向延长,交OB于D,根据等腰直角三角形的性质和垂径定理,即可求出ON、ND、PN,设圆C的半径为r,再根据等腰直角三角形的性质即可用r表示出CD、NC,最后根据勾股定理列方程即可求出r.【详解】解:如图所示,圆C过点P、Q,且与相切于点M,连接CM,CP,过点C作CN⊥PQ于N并反向延长,交OB于D∵,,∴PQ=OQ-OP=4根据垂径定理,PN=∴ON=PN+OP=4在Rt△OND中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,OD=设圆C的半径为r,即CM=CP=r∵圆C与相切于点M,∴∠CMD=90°∴△CMD为等腰直角三角形∴CM=DM=r,CD=∴NC=ND-CD=4-根据勾股定理可得:NC2+PN2=CP2即解得:(此时DM>OD,点M不在射线OB上,故舍去)故答案为:.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.18、【分析】先根据定弦抛物线的定义求出定弦抛物线的表达式,再按图象的平移规律平移即可.【详解】∵某定弦抛物线的对称轴为直线∴某定弦抛物线过点∴该定弦抛物线的解析式为将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是即故答案为:.【点睛】本题主要考查二次函数图象的平移,能够求出定弦抛物线的表达式并掌握平移规律是解题的关键.三、解答题(共66分)19、(2)m="2,A(-2,0);"(2)①,②点E′的坐标是(2,2),③点E′的坐标是(,2).【分析】试题分析:(2)将点代入解析式即可求出m的值,这样写出函数解析式,求出A点坐标;(2)①将E点的坐标代入二次函数解析式,即可求出AA′;②连接EE′,构造直角三角形,利用勾股定理即可求出A′B2+BE′2当n=2时,其最小时,即可求出E′的坐标;③过点A作AB′⊥x轴,并使AB′="BE"=2.易证△AB′A′≌△EBE′,当点B,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,由相似就可求出E′的坐标试题解析:解:(2)由题意可知4m=4,m=2.∴二次函数的解析式为.∴点A的坐标为(-2,0).(2)①∵点E(0,2),由题意可知,.解得.∴AA′=.②如图,连接EE′.由题设知AA′=n(0<n<2),则A′O=2-n.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2–n)2+42=n2-4n+3.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=n.又BE=OB-OE=2.∴在Rt△BE′E中,BE′2=E′E2+BE2=n2+9,∴A′B2+BE′2=2n2-4n+29=2(n–2)2+4.当n=2时,A′B2+BE′2可以取得最小值,此时点E′的坐标是(2,2).③如图,过点A作AB′⊥x轴,并使AB′=BE=2.易证△AB′A′≌△EBE′,∴B′A′=BE′,∴A′B+BE′=A′B+B′A′.当点B,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴,∴AA′=∴EE′=AA′=,∴点E′的坐标是(,2).考点:2.二次函数综合题;2.平移.【详解】20、(1)这两年我市推行绿色建筑面积的年平均增长率为40%;(2)如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【分析】(1)设这两年我市推行绿色建筑面积的年平均增长率x,根据2016年的绿色建筑面积约为950万平方米和2018年达到了1862万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2019年绿色建筑面积,再与计划推行绿色建筑面积达到2400万平方米进行比较,即可得出答案.【详解】(1)设这两年我市推行绿色建筑面积的年平均增长率为x,则有950(1+x)2=1862,解得,x1=0.4,x2=−2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862×(1+40%)=2606.8,∵2606.8>2400,∴2019年我市能完成计划目标,即如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.21、【分析】由三角形面积和边长可求出对应边的高,再由勾股定理求出余弦所需要的边长即可解答.【详解】解:过点点作于点,∵的面积,∴,在中,由勾股定理得,所以【点睛】本题考查了解直角三角形,掌握余弦的定义(余弦=邻边:斜边)和用面积求高是解题的关键.22、(1)见解析;(2)【分析】(1)利用圆周角定理得到∠ACB=90°,再根据切线的性质得∠ABD=90°,则∠BAD+∠D=90°,然后利用等量代换证明∠BED=∠D,从而判断BD=BE;(2)利用圆周角定理得到∠AFB=90°,则根据等腰三角形的性质DF=EF=2,再证明,列比例式求出AD的长,然后计算AD-DE即可.【详解】(1)证明:∵是的直径,∴,∴.∵,∴.∵是的切线,∴,∴.又∵平分,∴,∴,∴;(2)解:∵是的直径,∴,又∵,∴.在中,根据勾股定理得,.∵,,∴,∴,即,解得,∴.【点睛】本题考查了圆周角定理、等腰三角形的判定与性质和相似三角形的判定与性质、切线的性质.熟练掌握切线的性质和相似三角形的判定与性质是解答本题的关键.23、(1),y=x-2;(2)或【分析】(1)根据点A的坐标即可求出反比例函数的解析式,再求出B的坐标,然后将A,B的坐标代入一次函数求出a,b,即可求出一次函数的解析式.(2)结合图象找出反比例函数在一次函数上方所对应的自变量的取值范围即可解答.【详解】解:(1)根据点的坐标可知,在反比例函数中,,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论