版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列各式中属于最简二次根式的是()A. B. C. D.2.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内上的一点,若,则的度数是A.B.C.D.3.如图,正方形的边长为,对角线相交于点,将直角三角板的直角顶点放在点处,两直角边分别与重叠,当三角板绕点顺时针旋转角时,两直角边与正方形的边交于两点,则四边形的周长()A.先变小再变大 B.先变大再变小C.始终不变 D.无法确定4.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是()A. B. C. D.5.如图,将绕点A按顺时针方向旋转一定角度得到,点B的对应点D恰好落在边上.若,则的长为()A.0.5 B.1.5 C. D.16.从1到9这9个自然数中任取一个,是偶数的概率是()A. B. C. D.7.如图,的直径,是的弦,,垂足为,且,则的长为()A.10 B.12 C.16 D.188.下列方程是一元二次方程的是()A.3x2+=0 B.(3x-1)(3x+1)=3C.(x-3)(x-2)=x2 D.2x-3y+1=09.如图,在平面直角坐标系中,正方形ABCD顶点B(﹣1,﹣1),C在x轴正半轴上,A在第二象限双曲线y=﹣上,过D作DE∥x轴交双曲线于E,连接CE,则△CDE的面积为()A.3 B. C.4 D.10.下列运算中,结果正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在中,,,,用含和的代数式表示的值为:_________.12.若是方程的一个根,则的值是________.13.在四边形ABCD中,AD=BC,AD∥BC.请你再添加一个条件,使四边形ABCD是菱形.你添加的条件是_________.(写出一种即可)14.如图,双曲线与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为______.15.在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到白球的概率为,则x=_______.16.已知向量为单位向量,如果向量与向量方向相反,且长度为3,那么向量=________.(用单位向量表示)17.如图,在中,,,若为斜边上的中线,则的度数为________.18.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,ΔPEF、ΔPDC、ΔPAB的面积分别为S、S1、S1.若S=1,则S1+S1=.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,点是轴正半轴上的一动点,抛物线(是常数,且过点,与轴交于两点,点在点左侧,连接,以为边做等边三角形,点与点在直线两侧.(1)求B、C的坐标;(2)当轴时,求抛物线的函数表达式;(3)①求动点所成的图像的函数表达式;②连接,求的最小值.20.(6分)图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?21.(6分)如图1,中,是的高.(1)求证:.(2)与相似吗?为什么?(3)如图2,设的中点为的中点为,连接,求的长.22.(8分)计算:3tan30°−tan45°+2sin60°23.(8分)解方程:x2+2x=1.24.(8分)如图1,抛物线y=ax2+bx+c的顶点(0,5),且过点(﹣3,),先求抛物线的解析式,再解决下列问题:(应用)问题1,如图2,线段AB=d(定值),将其弯折成互相垂直的两段AC、CB后,设A、B两点的距离为x,由A、B、C三点组成图形面积为S,且S与x的函数关系如图所示(抛物线y=ax2+bx+c上MN之间的部分,M在x轴上):(1)填空:线段AB的长度d=;弯折后A、B两点的距离x的取值范围是;若S=3,则是否存在点C,将AB分成两段(填“能”或“不能”);若面积S=1.5时,点C将线段AB分成两段的长分别是;(2)填空:在如图1中,以原点O为圆心,A、B两点的距离x为半径的⊙O;画出点C分AB所得两段AC与CB的函数图象(线段);设圆心O到该函数图象的距离为h,则h=,该函数图象与⊙O的位置关系是.(提升)问题2,一个直角三角形斜边长为c(定值),设其面积为S,周长为x,证明S是x的二次函数,求该函数关系式,并求x的取值范围和相应S的取值范围.25.(10分)如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若AE=5,AC=4,求BE的长.26.(10分)如图,是半径为1的的内接正十边形,平分(1)求证:;(2)求证:
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据最简二次根式的定义解答即可.【详解】A.是最简二次根式;B.∵=,∴不是最简二次根式;C.∵=,∴不是最简二次根式;D.∵,∴不是最简二次根式;故选A.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.2、D【分析】根据圆周角定理求出,根据互余求出∠COD的度数,再根据等腰三角形性质即可求出答案.【详解】解:连接OD,,,,,.故选D.【点睛】本题考查了圆周角定理,等腰三角形性质等知识.熟练应用圆周角定理是解题的关键.3、A【分析】由四边形ABCD是正方形,直角∠FOE,证明△DOF≌△COE,则可得四边形OECF的周长与OE的变化有关.【详解】解:四边形是正方形,,,即,又,随的变化而变化。由旋转可知先变小再变大,故选:.【点睛】本题考查了用正方形的性质来证明三角形全等,再利用相等线段进行变形,根据变化的线段来判定四边形OECF周长的变化.4、A【详解】解:画树状图得:∵共有4种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是.故选A.5、D【解析】利用∠B的正弦值和正切值可求出BC、AB的长,根据旋转的性质可得AD=AB,可证明△ADB为等边三角形,即可求出BD的长,根据CD=BC-BD即可得答案.【详解】∵AC=,∠B=60°,∴sinB=,即,tan60°=,即,∴BC=2,AB=1,∵绕点A按顺时针方向旋转一定角度得到,∴AB=AD,∵∠B=60°,∴△ADB是等边三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故选D.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.6、B【解析】∵在1到9这9个自然数中,偶数共有4个,∴从这9个自然数中任取一个,是偶数的概率为:.故选B.7、C【分析】连接OC,根据圆的性质和已知条件即可求出OC=OB=,BE=,从而求出OE,然后根据垂径定理和勾股定理即可求CE和DE,从而求出CD.【详解】解:连接OC∵,∴OC=OB=,BE=∴OE=OB-BE=6∵是的弦,,∴DE=CE=∴CD=DE+CE=16故选:C.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.8、B【分析】根据一元二次方程的定义,二次项系数不能等于0,未知数最高次数是2的整式方程,即可得到答案.【详解】解:A、不是整式方程,故本项错误;B、化简得到,是一元二次方程,故本项正确;C、化简得到,是一元一次方程,故本项错误;D、是二元一次方程,故本项错误;故选择:B.【点睛】本题考查了一元二次方程的定义,熟记定义是解题的关键.9、B【分析】作辅助线,构建全等三角形:过A作GH⊥x轴,过B作BG⊥GH,过C作CM⊥ED于M,证明△AHD≌△DMC≌△BGA,设A(x,﹣),结合点B的坐标表示:BG=AH=DM=﹣1﹣x,由HQ=CM,列方程,可得x的值,进而根据三角形面积公式可得结论.【详解】过A作GH⊥x轴,过B作BG⊥GH,过C作CM⊥ED于M,设A(x,﹣),∵四边形ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∴∠BAG=∠ADH=∠DCM,∴△AHD≌△DMC≌△BGA(AAS),∴BG=AH=DM=﹣1﹣x,∴AG=CM=DH=1﹣,∵AH+AQ=CM,∴1﹣=﹣﹣1﹣x,解得:x=﹣2,∴A(﹣2,2),CM=AG=DH=1﹣=3,∵BG=AH=DM=﹣1﹣x=1,∴点E的纵坐标为3,把y=3代入y=﹣得:x=﹣,∴E(﹣,3),∴EH=2﹣=,∴DE=DH﹣HE=3﹣=,∴S△CDE=DE•CM=××3=.故选:B.【点睛】本题主要考查反比例函数图象和性质与几何图形的综合,掌握“一线三垂直”模型是解题的关键.10、C【解析】A:完全平方公式:,据此判断即可B:幂的乘方,底数不变,指数相乘,据此判断即可C:幂的乘方,底数不变,指数相乘D:同底数幂相除,底数不变指数相减【详解】选项A不正确;选项B不正确;选项C正确选项D不正确.故选:C【点睛】此题考查幂的乘方,完全平方公式,同底数幂的除法,掌握运算法则是解题关键二、填空题(每小题3分,共24分)11、【分析】分别在Rt△ABC和Rt△ADC中用AC和的三角函数表示出AB和AD,进一步即可求出结果.【详解】解:在Rt△ABC中,∵,∴,在Rt△ADC中,∵,∴,∴.故答案为:.【点睛】本题考查了三角函数的知识,属于常考题型,熟练掌握正弦的定义是解题的关键.12、1【分析】将代入方程,得到,进而得到,,然后代入求值即可.【详解】解:由题意,将代入方程∴,,∴故答案为:1【点睛】本题考查一元二次方程的解,及分式的化简,掌握方程的解的概念和平方差公式是本题的解题关键.13、此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【分析】由在四边形ABCD中,AD=BC,AD∥BC,可判定四边形ABCD是平行四边形,然后根据一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形,即可判定四边形ABCD是菱形,则可求得答案.【详解】解:如图,∵在四边形ABCD中,AD=BC,AD∥BC,
∴四边形ABCD是平行四边形,
∴当AB=BC或BC=CD或CD=AD或AB=AD时,四边形ABCD是菱形;
当AC⊥BD时,四边形ABCD是菱形.
故答案为:此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【点睛】此题考查了菱形的判定定理.此题属于开放题,难度不大,注意掌握一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形是解此题的关键.14、1.【详解】解:∵⊙O在第一象限关于y=x对称,也关于y=x对称,P点坐标是(1,3),∴Q点的坐标是(3,1),∴S阴影=1×3+1×3-2×1×1=1.故答案为:115、1【分析】直接以概率求法得出关于x的等式进而得出答案.【详解】解:由题意得:,解得,故答案为:1.【点睛】本题考查了概率的意义,正确把握概率的求解公式是解题的关键.16、【解析】因为向量为单位向量,向量与向量方向相反,且长度为3,所以=,故答案为:.17、【分析】先根据直角三角形的性质得出AD=CD,进而根据等边对等角得出,再根据即得.【详解】∵为斜边上的中线∴AD=CD∴∵∴故答案为:.【点睛】本题考查直角三角形的性质及等腰三角形的性质,解题关键是熟知直角三角形斜边上的中线等于斜边的一半.18、2.【详解】∵E、F分别为PB、PC的中点,∴EFBC.∴ΔPEF∽ΔPBC.∴SΔPBC=4SΔPEF=8s.又SΔPBC=S平行四边形ABCD,∴S1+S1=SΔPDC+SΔPAB=S平行四边形ABCD=8s=2.三、解答题(共66分)19、(1)、;(2);(3)①;②.【分析】(1),令,则或4,即可求解;(2)当轴时,则,则,故点,即可求解;(3)构造一线三垂直相似模型由,则,解得:,,故点,,即可求解.【详解】解:(1)当时,即,解得或4,故点、的坐标分别为:、;(2)∵等边三角形,∴,∴当轴时,,∴,故点,即,解得:,故抛物线的表达式为:;(3)①如图,过点作于点,过点作轴的垂线于点,过点作轴交轴于点交于点,为等边三角形,∴点为的中点,,∴点,,,,,,,其中,,解得:,,故点,,即动点所成的图像的函数满足,∴动点所成的图像的函数表达式为:.②由①得点,,∴,故当时,的最小值为,即的最小值为.【点睛】本题考查了二次函数综合运用,涉及到解直角三角形、三角形相似等,其中(3)构造一线三直角模型,用三角形相似的方法求解点的坐标,是本题的难点.20、【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再根据通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.【详解】解:建立平面直角坐标系.设二次函数的解析式为(a≠0).∵图象经过点(2,-2),∴-2=4a,解得:.∴.当y=-3时,.答:当水面高度下降1米时,水面宽度为米.【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,难度一般.21、(1)见解析;(2),理由见解析;(3)【解析】(1)由题意,BD、CE是高,则∠ADB=∠AEC=90°,是公共角,即可得出△ABD∽△ACE;(2)由△ABD∽△ACE可推出,又,根据相似三角形的判定定理即可证得;(3)连接、,根据等腰三角形的性质可得,,根据三角函数可得,进而可求得,由勾股定理即可求出FM的长.【详解】(1)、是的高。(2),即(3)连接、,∵BD是△ABC的高,M为BC的中点,∴在Rt△CBD中,,同理可得,∴,∵F是DE的中点,∴,由得,∴,∵DE=12,∴,∵,且,∴.【点睛】本题主要考查了相似三角形的判定和性质,直角三角形斜边上中线的性质以及等腰三角形的判定与性质.22、【分析】先计算出特殊的三角函数值,按照运算顺序计算即可.【详解】解:原式
.【点睛】本题主要考查特殊锐角的三角函数值,解题的关键是熟记特殊锐角的三角函数值.23、x1=﹣1+,x2=﹣1﹣【解析】利用配方法解一元二次方程即可.解:∵x2+2x=1,∴x2+2x+1=1+1,∴(x+1)2=2,∴x+1=±,∴x1=﹣1+,x2=﹣1﹣.【详解】请在此输入详解!24、抛物线的解析式为:y=﹣x2+5;(2)20<x<2,不能,+和﹣;(2),相离或相切或相交;(3)相应S的取值范围为S>c2.【分析】将顶点(0,5)及点(﹣3,)代入抛物线的顶点式即可求出其解析式;(2)由抛物线的解析式先求出点M的坐标,由二次函数的图象及性质即可判断d的值,可由d的值判断出x的取值范围,分别将S=3和2.5代入抛物线解析式,即可求出点C将线段AB分成两段的长;(2)设AC=y,CB=x,可直接写出点C分AB所得两段AC与CB的函数解析式,并画出图象,证△OPM为等腰直角三角形,过点O作OH⊥PM于点H,则OH=PM=,分情况可讨论出AC与CB的函数图象(线段PM)与⊙O的位置关系;(3)设直角三角形的两直角边长分别为a,b,由勾股定理及完全平公式可以证明S是x的二次函数,并可写出x的取值范围及相应S的取值范围.【详解】解:∵抛物线y=ax2+bx+c的顶点(0,5),∴y=ax2+5,将点(﹣3,)代入,得=a×(﹣3)2+5,∴a=,∴抛物线的解析式为:y=;(2)∵S与x的函数关系如图所示(抛物线y=ax2+bx+c上MN之间的部分,M在x轴上),在y=,当y=0时,x2=2,x2=﹣2,∴M(2,0),即当x=2时,S=0,∴d的值为2;∴弯折后A、B两点的距离x的取值范围是0<x<2;当S=3时,设AC=a,则BC=2﹣a,∴a(2﹣a)=3,整理,得a2﹣2a+6=0,∵△=b2﹣4ac=﹣4<0,∴方程无实数根;当S=2.5时,设AC=a,则BC=2﹣a,∴a(2﹣a)=2.5,整理,得a2﹣2a+3=0,解得,∴当a=时,2﹣a=,当a=时,2﹣a=,∴若面积S=2.5时,点C将线段AB分成两段的长分别是和;故答案为:2,0<x<2,不能,和;(2)设AC=y,CB=x,则y=﹣x+2,如图2所示的线段PM,则P(0,2),M(2,0),∴△OPM为等腰直角三角形,∴PM=OP=2,过点O作OH⊥PM于点H,则OH=PM=,∴当0<x<时,AC与CB的函数图象(线段PM)与⊙O相离;当x=时,AC与CB的函数图象(线段PM)与⊙O相切;当<x<2时,AC与CB的函数图象(线段PM)与⊙O相交;故答案为:,相离或相切或相交;(3)设直角三角形的两直角边长分别为a,b,则,∵(a+b)2=a2+b2+2ab,∴(x﹣c)2=c2+2ab,∴,即S=,∴x的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 损害赔偿和解协议书3篇
- 招标文件范本的内容说明3篇
- 工业材料采购规定3篇
- 房屋买卖合同正规格式3篇
- 工伤全权代理书3篇
- 房屋买卖委托公证指南3篇
- 招标编号修改优化招标过程的关键步骤3篇
- 开庭委托书写作技巧大放送3篇
- 教育培训部门主管派遣服务合同3篇
- 招标文件附件格式创新方法3篇
- DB3502∕Z 5058-2020 厦门市城市轨道交通工程预算定额(土建工程)
- 《桥梁工程计算书》word版
- (完整版)ECRS培训课件
- 《激光原理》复习解析
- 增值税发票税控系统专用设备注销发行登记表
- 质量管理体系各条款的审核重点
- 聚丙烯化学品安全技术说明书(MSDS)
- 蔬菜采购合同水果蔬菜采购合同
- CX-TGK01C型微电脑时间温度控制开关使用说明书
- 电仪工段工段长职位说明书
- 简易送货单EXCEL打印模板
评论
0/150
提交评论