中学位数与众数福建省厦门市逸夫中学2025届数学九上期末学业水平测试试题含解析_第1页
中学位数与众数福建省厦门市逸夫中学2025届数学九上期末学业水平测试试题含解析_第2页
中学位数与众数福建省厦门市逸夫中学2025届数学九上期末学业水平测试试题含解析_第3页
中学位数与众数福建省厦门市逸夫中学2025届数学九上期末学业水平测试试题含解析_第4页
中学位数与众数福建省厦门市逸夫中学2025届数学九上期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中学位数与众数福建省厦门市逸夫中学2025届数学九上期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球(

)A.32个 B.36个 C.40个 D.42个2.若将抛物线y=2(x+4)2﹣1平移后其顶点落y在轴上,则下面平移正确的是()A.向左平移4个单位 B.向右平移4个单位C.向上平移1个单位 D.向下平移1个单位3.的值等于()A. B. C. D.4.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:15.小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是()A. B. C. D.6.函数y=ax2+1与(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.7.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°得到△A′B′C′的位置,连接C′B,则C′B的长为()A.2- B. C. D.18.如图,点是线段的垂直平分线与的垂直平分线的交点,若,则的度数是()A. B. C. D.9.下列函数中,变量是的反比例函数是()A. B. C. D.10.方程2x(x﹣3)=5(x﹣3)的根是()A.x= B.x=3 C.x1=,x2=3 D.x1=﹣,x2=﹣311.某人沿倾斜角为β的斜坡前进100m,则他上升的最大高度是()mA. B. C. D.12.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30° B.15° C.10° D.20°二、填空题(每题4分,共24分)13.在平面直角坐标系中,与位似,位似中心为原点,点与点是对应顶点,且点A,点的坐标分别是,,那么与的相似比为__________.14.如图,已知梯形ABCO的底边AO在轴上,,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为__________.15.在一个不透(明的袋子中装有除了颜色外其余均相同的个小球,其中红球个,黑球个,若再放入个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则的值为__________.16.如图,在正方形中,以为边作等边,延长,分别交于点,连接、、与相交于点,给出下列结论:①;②;③;④,其中正确的是__________.17.近日,某市推出名师公益大课堂.据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.如果第二批,第三批公益课受益学生人次的增长率相同,则这个增长率是______.18.比较sin30°、sin45°的大小,并用“<”连接为_____.三、解答题(共78分)19.(8分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).20.(8分)一个不透明的口袋里有四个完全相同的小球,把它们分别标号为,,,.随机摸取一个小球然后放回,再随机摸取一个.请用画树状图和列表的方法,求下列事件的概率:(1)两次取出的小球标号相同;(2)两次取出的小球标号的和等于1.21.(8分)如图,在平面直角坐标系中,直线与函数的图象交于,两点,且点的坐标为.(1)求的值;(2)已知点,过点作平行于轴的直线,交直线于点,交函数的图象于点.①当时,求线段的长;②若,结合函数的图象,直接写出的取值范围.22.(10分)解方程:(1);(2).23.(10分)如图,双曲线经过点,且与直线有两个不同的交点.(1)求的值;(2)求的取值范围.24.(10分)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上一点,且BD=BA,求tan∠ADC的值.25.(12分)某超市销售一种饮料,每瓶进价为元,当每瓶售价元时,日均销售量瓶.经市场调查表明,每瓶售价每增加元,日均销售量减少瓶.(1)当每瓶售价为元时,日均销售量为瓶;(2)当每瓶售价为多少元时,所得日均总利润为元;(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?26.如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在线段BA上以每秒3cm的速度点A运动,同时动点N从点C出发,在线段CB上以每秒2cm的速度向点B运动,其中一点到达终点后,另一点也停止运动.运动时间为t秒,连接MN.(1)填空:BM=cm.BN=cm.(用含t的代数式表示)(2)若△BMN与△ABC相似,求t的值;(3)连接AN,CM,若AN⊥CM,求t的值.

参考答案一、选择题(每题4分,共48分)1、A【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”【详解】设盒子里有白球x个,

根据得:解得:x=1.

经检验得x=1是方程的解.

答:盒中大约有白球1个.

故选;A.【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.2、B【分析】抛物线y=2(x+4)2﹣1的顶点坐标为(﹣4,﹣1),使平移后的函数图象顶点落在y轴上,则原抛物线向右平移4个单位即可.【详解】依题意可知,原抛物线顶点坐标为(﹣4,﹣1),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向右平移4个单位即可.故选:B.【点睛】此题考察抛物线的平移规律,根据规律“自变量左加右减,函数值上加下减”得到答案.3、B【解析】根据特殊角的三角函数值求解.【详解】.

故选:B.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是熟记几个特殊角的三角函数值.4、C【分析】菱形的性质;含30度角的直角三角形的性质.【详解】如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1,故选C.5、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:

∵共有9种等可能的结果,小华获胜的情况数是3种,

∴小华获胜的概率是:=.

故选:A.【点睛】此题主要考查了列表法和树状图法求概率知识,用到的知识点为:概率=所求情况数与总情况数之比.6、B【解析】试题分析:分a>0和a<0两种情况讨论:当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合.故选B.考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.7、C【分析】如图,连接BB′,延长BC′交AB′于点D,证明△ABC′≌△B′BC′,得到∠DBB′=∠DBA=30°;求出BD、C′D的长,即可解决问题.【详解】解:如图,连接BB′,延长BC′交AB′于点D,

由题意得:∠BAB′=60°,BA=B′A,

∴△ABB′为等边三角形,

∴∠ABB′=60°,AB=B′B;

在△ABC′与△B′BC′中,∴△ABC′≌△B′BC′(SSS),

∴∠DBB′=∠DBA=30°,

∴BD⊥AB′,且AD=B′D,∵AC=BC=,∴,∴,,,.故选:C.【点睛】本题考查旋转的性质,全等三角形的性质和判定,等边三角形的判定与性质,等腰直角三角形的性质,直角三角形斜边上的中线.作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.8、D【分析】连接AD,根据想的垂直平分线的性质得到DA=DB,DB=DC,根据等腰三角形的性质计算即可.【详解】解:连接AD,∵点D为线段AB与线段BC的垂直平分线的交点,∴DA=DB,DB=DC,∴设∠DAC=x°,则∠DCA=x°,∠DAB=∠ABD=(35+x)°∠ADB=180°-2(35+x)°∴∠BDC+∠ADB+∠DAC+∠DCA=180°,∠BDC+180-2(35+x)+x+x=180∴∠BDC=70°故选:D.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9、B【解析】根据反比例函数的一般形式即可判断.【详解】A.不符合反比例函数的一般形式的形式,选项错误;B.符合反比例函数的一般形式的形式,选项正确;C.不符合反比例函数的一般形式的形式,选项错误;D.不符合反比例函数的一般形式的形式,选项错误.故选B.【点睛】本题考查了反比例函数的定义,熟练掌握反比例函数的一般形式是解题的关键.10、C【解析】利用因式分解法解一元二次方程即可.解:方程变形为:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,∴x﹣3=0或2x﹣5=0,∴x1=3,x2=.故选C.11、B【分析】设他上升的最大高度是hm,根据坡角及三角函数的定义即可求得结果.【详解】设他上升的最大高度是hm,由题意得,解得故选:B.12、B【解析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故选B.点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.二、填空题(每题4分,共24分)13、2【分析】分别求出OA和OA1的长度即可得出答案.【详解】根据题意可得,,,所以相似比=,故答案为2.【点睛】本题考查的是位似,属于基础图形,位似图形上任意一对对应点到位似中心的距离之比等于相似比.14、【分析】设C(x,y),BC=a.过D点作DE⊥OA于E点.根据DE∥AB得比例线段表示点D坐标;根据△OBC的面积等于3得关系式,列方程组求解.【详解】设C(x,y),BC=a.则AB=y,OA=x+a.过D点作DE⊥OA于E点.∵OD:DB=1:2,DE∥AB,∴△ODE∽△OBA,相似比为OD:OB=1:3,∴DE=AB=y,OE=OA=(x+a).∵D点在反比例函数的图象上,且D((x+a),y),∴y•(x+a)=k,即xy+ya=9k,∵C点在反比例函数的图象上,则xy=k,∴ya=8k.∵△OBC的面积等于3,∴ya=3,即ya=1.∴8k=1,k=.故答案为:.15、1【分析】由概率=所求情况数与总情况数之比,根据随机摸出一个球是黑球的概率等于可得方程,继而求得答案.【详解】根据题意得:,

解得:.

故答案为:1.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16、①②③④【分析】①正确.利用直角三角形30度角的性质即可解决问题;②正确,通过计算证明∠BPD=135°,即可判断;③正确,根据两角相等两个三角形相似即可判断;④正确.利用相似三角形的性质即可证明.【详解】∵△BPC是等边三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ABC=∠ADC=∠BCD=90°,

∴∠ABE=∠DCF=90°-60°=30°,在和中,,∴,∴,∴在中,∠A=90°,∠ABE=30°,∴,故①正确;∵PC=CD,∠PCD=30°,

∴∠PDC=∠DPC=75°,∴∠BPD=∠BPC+∠DPC=60°+75°=135°,故②正确;∵∠ADC=90°,∠PDC=75°,

∴∠EDP=∠ADC-∠PDC=90°-75°=15°,

∵∠DBA=45°,∠ABE=30°,

∴∠EBD=∠DBA-∠ABE=45°-30°=15°,

∴∠EDP=∠EBD=15°,

∵∠DEP=∠BED,

∴△PDE∽△DBE,故③正确;∵△PDE∽△DBE,∴,∴,故④正确;综上,①②③④都正确,故答案为:①②③④.【点睛】本题考查相似三角形的判定和性质,等边三角形的性质,正方形的性质,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识.17、【分析】设增长率为x,根据“第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次”可列方程求解.【详解】设增长率为x,根据题意,得2(1+x)2=2.42,解得x1=-2.1(舍去),x2=0.1=10%.∴增长率为10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用-增长率问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18、<.【解析】直接利用特殊角的三角函数值代入求出答案.【详解】解:∵sin30°=12、sin45°=22,

∴sin30°<sin45°.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.三、解答题(共78分)19、隧道AB的长约为635m.【分析】首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算.【详解】如图,过点C作CO⊥直线AB,垂足为O,则CO=1500m∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO中,OA==1500×=500m在Rt△CBO中,OB=1500×tan45°=1500m∴AB=1500-500≈1500-865=635(m)答:隧道AB的长约为635m.考点:锐角三角函数的应用.20、(1);(2);【分析】(1)先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号相同的占1种,然后根据概率的概念计算即可;

(2)由(1)可知有16种等可能的结果数,其中两次取出的小球标号的和等于1的有3种,进而可求出其概率.【详解】画树状图如图(1)∵共有种等可能的结果,两次取出的小球标号相同的共种情况,∴两次取出的小球标号相同的概率为.(2)两次取出的小球标号的和等于的情况共有种,两次取出的小球标号的和等于的概率为.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21、(1);(2)①;②或【分析】(1)先把点A代入一次函数得到a的值,再把点A代入反比例函数,即可求出k;(2)①根据题意,先求出m的值,然后求出点C、D的坐标,即可求出CD的长度;②根据题意,当PC=PD时,点C、D恰好与点A、B重合,然后求出点B的坐标,结合函数图像,即可得到m的取值范围.【详解】解:(1)把代入,得,∴点A为(1,3),把代入,得;(2)当时,点P为(2,0),如图:把代入直线,得:,∴点C坐标为(2,4),把代入,得:,∴;②根据题意,当PC=PD时,点C、D恰好与点A、B重合,如图,∵,解得:或(即点A),∴点B的坐标为(),由图像可知,当时,有点P在的左边,或点P在的右边取到,∴或.【点睛】本题考查了反比例函数的图像和性质,一次函数的图像和性质,解题的关键是掌握反比例函数与一次函数的联系,熟练利用数形结合的思想进行解题.22、(1);(2)【分析】(1)化为一般形式后,用公式法求解即可.(2)用因式分解法提取公因式即可.【详解】(1)原方程可化为,得(2),所以.【点睛】本题考查的是一元二次方程的解法,能根据方程的特点灵活的选择解方程的方法是关键.23、(1)m=3;(2)﹣<k<1【分析】(1)将点P的坐标代入中,即可得出m的值;

(2)联立反比例函数与一次函数的解析式,消去y得到关于x的一元二次方程,根据根的判别式大于1列出不等式,进而即可求得k的取值范围.【详解】解:(1)∵双曲线y=经过点P(3,1),∴m=3×1=3;(2)∵双曲线y=与直线y=kx﹣2(k<1)有两个不同的交点,∴当=kx﹣2时,整理为:kx2﹣2x﹣3=1,△=(﹣2)2﹣4k•(﹣3)>1,∴k>﹣,∴k的取值范围是﹣<k<1.【点睛】本题主要考查了一次函数和反比例函数的交点问题,解答本题的关键是理解反比例函数与一次函数由两个交点时,联立解析式消去y得到的关于x的一元二次方程有两个实数根,即>1.24、2﹣.【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论