




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
勤志数学
二次函数与一元二次方式练习题
一、选择题(共15小题)
1、已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=L则下列结论正确的是()
2、已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()
A、ac<0B、a-b+c>0
C^b=-4aD、关于x的方程ax?+bx+c=0的根是-1,X2=5
3、已知抛物线y=ax2+bx+c中,4a-b=0,a-b+c>0,抛物线与x轴有两个不同的交点,且
这两个交点之间的距离小于2,则下列判断错误的是()
A、abc<0B、c>0
C^4a>cD、a+b+c>0
4、抛物线y=ax?+bx+c在x轴的下方,则所要满足的条件是()
A、a<0,b2-4ac<0B、a<0,b2-4ac>0
C、a>0,b2-4ac<0D、a>0,b2-4ac>0
5、如图所示,二次函数y=ax?+bx+c(awO)的图象经过点(-1,2),且与x轴交点的横坐
标分别为其中-下列结论:
xi,X2,2<xi<-1,0<x2<l,
①abc>0;
②4a-2b+c<0;
(3)2a-b<0;
(4)b2+8a>4ac.
其中正确的有()
6、已知:a>b>c,且a+b+c=O,则二次函数y=ax?+bx+c的图象可能是下列图象中的()
1
7、已知y/aX+bix+ci,y2=a2X?+b2X+C2且满足.则称抛物线yi,丫2互为"友好抛物线”,则
下列关于“友好抛物线”的说法不正确的是()
A、yi,丫2开口方向、开口大小不一定相同B、因为yi,丫2的对称轴相同
C、如果y2的最值为m,则yi的最值为kmD、如果y2与x轴的两交点间距离为
d,则yi与x轴的两交点间距离为|k|d
8、已知二次函数的y=ax?+bx+c图象是由的图象经过平移而得到,若图象与x轴交于A、C
(-1,0)两点,与y轴交于D(0,),顶点为B,则四边形ABCD的面积为()
A、9B、10
C、11D、12
9、根据下列表格的对应值:
X89101112
ax2+bx+c-4.56-2.01-0.381.23.4
判断方程ax2+bx+c=0(axO,a,b,c为常数)的一■个解x的范围是()
A、8<x<9B、9<x<10
C、10<x<llD、ll<x<12
10、如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程
ax2+bx+c=0的两个根分别是xi=1.6,X2=()
C、4.4D、以上都不对
11、如图,抛物线y=x2+l与双曲线丫=的交点A的横坐标是1,则关于x的不等式+x2+l<0
的解集是()
2
C、0<x<lD、-l<x<0
12、已知二次函数y=ax2+bx+c的图象如图所示,则关于x的不等式bx+a>0的解集是()
C、x>D、x>
13、方程7x2-(k+13)x+k2-k-2=0(k是实数)有两个实根a、p,且l<p<2,
那么k的取值范围是()
A、3<k<4B、-2<k<-1
C、3<k<4或-2<k<-1D、无解
14、对于整式x?和2x+3,请你判断下列说法正确的是()
A、对于任意实数X,不等式x2>2x+3都成立B、对于任意实数X,不等式x?<2x+3
都成立
C、x<3时,不等式x?<2x+3成立D、x>3时,不等式x?>2x+3成立
二、解答题(共7小题)
15、已知抛物线y=x2+2px+2p-2的顶点为M,
(1)求证抛物线与x轴必有两个不同交点;
(2)设抛物线与x轴的交点分别为A,B,求实数p的值使aABM面积达到最小.
16、已知:二次函数丫=(2m-1)x2-(5m+3)x+3m+5
(1)m为何值时,此抛物线必与x轴相交于两个不同的点;
(2)m为何值时,这两个交点在原点的左右两边;
(3)m为何值时,此抛物线的对称轴是y轴;
(4)m为何值时,这个二次函数有最大值.
3
17、已知下表:
(1)求a、b、c的值,并在表内空格处填入正确的数;
(2)请你根据上面的结果判断:
①是否存在实数x,使二次三项式ax2+bx+c的值为0?若存在,求出这个实数值:若不存在,
请说明理由.
②画出函数y=ax?+bx+c的图象示意图,由图象确定,当x取什么实数时,ax2+bx+c>0.
X012
ax*1
ax*+bx+c33
18请将下表补充完整
判别式
A>0△=0A<0
A=A2-4ac
二次函数y=ax2
+=0(a>0)
的图象
一元二次方程
有两个不相等的实数根再=有两个相等的实数
2根
ax++<r=0无实数根
、
-b-瓜-h+VAzb
(a>0)的根2a'七=2。&<引均=巧=一五
使y>0的K的取
XVXj或X
值礴
不等式♦+bx
b
X*-----
>0(a>0)2a
的解集
不等式ax,+
<0(q>0)
的解窠
(II)利用你在填上表时获得的结论,解不等式-X2-2X+3V0;
(III)利用你在填上表时获得的结论,试写出一个解集为全体实数的一元二次不等式;
(N)试写出利用你在填上表时获得的结论解一元二次不等式ax2+bx+c>0(axO)时的解题
步骤.
4
19、二次函数y=ax2+bx+c(aM)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)写出不等式ax2+bx+c>0的解集;
(3)写出y随x的增大而减小的自变量x的取值范围;
(4)若方程ax?+bx+c=k有两个不相等的实数根,求k的取值范围.
20、阅读材料,解答问题.
例.用图象法解一元二次不等式:X2-2X-3>0.
解:设y=x2-2x-3,则y是x的二次函数.:a=:L>0,...抛物线开口向上.
又\•当y=0时,x2-2x-3=0,解得xi=-l,x?=3.二由此得抛物线y=x2-2x-3的大致图象
如图所示.观察函数图象可知:当x<-l或x>3时,y>0..•«2-2*-3>0的解集是:x
<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是;
(2)仿照上例,用图象法解一元二次不等式:x2-5x+6<0.(画出大致图象).
三、填空题(共4小题)
21、二次函数y=ax?+bx+c(a*0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax,bx+cu。的两个根.xi=,X2=:
(2)写出不等式ax2+bx+c>0的解集.;
(3)写出y随x的增大而减小的自变量x的取值范围.;
(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.
5
22、如图是抛物线y=ax?+bx+c的一部分,其对称轴为直线x=l,若其与x轴一交点为B(3,
0),则由图象可知,不等式ax2+bx+c>0的解集是____________
23二次函数y=ax2+bx+c和一次函数y=mx+n的图象如图所示,贝ljax2+bx+c<mx+n时,x的
取值范围是_____________.
yr
24、如图,已知函数y=ax?+bx+c与y=-的图象交于A(-4,1)、B(2,-2)、C(1,-4)
三点,根据图象可求得关于x的不等式ax2+bx+c<-的解集为—
4y
1
—--------------T----------►
\03一一X
\,/区2.-2)
\/41.一4)
6
答案与评分标准
一、选择题(共15小题)
1、(2011•山西)已知二次函数y=ax?+bx+c的图象如图所示,对称轴为直线x=l,则下列结
论正确的是()
考点:二次函数图象与系数的关系;抛物线与x轴的交点。
专题:计算题。
分析:根据抛物线的开口方向,对称轴,与x轴、y轴的交点,逐一判断.
解答:解:A、,抛物线开口向下,与y轴交于正半轴,.,.aVO,c>0,ac<0,故本选项错
误;
B、•.,抛物线对称轴是x=l,与x轴交于(3,0),.,.抛物线与x轴另一交点为(-1,0),
即方程ax2+bx+c=0的两根是xi=-1,X2=3,故本选项正确;
C、•.•抛物线对称轴为x=-=l,;.2a+b=0,故本选项错误;
D、:•抛物线对称轴为x=l,开口向下,.•.当x>l时,y随x的增大而减小,故本选项错误.
故选B.
点评:本题考查了抛物线与二次函数系数之间的关系.关键是会利用对称轴的值求2a与b
的关系,对称轴与开口方向确定增减性,以及二次函数与方程之间的转换.
2、(2010•梧州)已知二次函数y=ax?+bx+c的图象如图所示,那么下列判断不正确的是()
y
A、ac<0a-b+c>0
C、b=-4aD、关于x的方程ax2+bx+c=0的根是X1=-1,x2=5
考点:二次函数图象与系数的关系;抛物线与x轴的交点。
分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据
抛物线与x轴交点及x=l时二次函数的值的情况进行推理,进而对所得结论进行判断.
解答:解:A、该二次函数开口向下,则aVO;抛物线交y轴于正半轴,则c>0;所以ac
<0,正确;
B、由于抛物线过(-1,0),则有:a-b+c=O,错误;
C、由图象知:抛物线的对称轴为x=-=2,即b=-4a,正确;
D、抛物线与x轴的交点为(-1,0)、(5,0);故方程ax?+bx+c=O的根是xi=-1,x2=5,
7
正确;
故选B.
点评:由图象找出有关a,b,c的相关信息以及抛物线的交点坐标,会利用特殊值代入法求
得特殊的式子,如:y=a+b+c,y=a-b+c,然后根据图象判断其值.
3、(2001•湖州)已知抛物线y=ax2+bx+c中,4a-b=0,a-b+c>0,抛物线与x轴有两个不
同的交点,且这两个交点之间的距离小于2,则下列判断错误的是()
A、abc<0B、c>0
C、4a>cD、a+b+c>0
考点:二次函数图象与系数的关系;抛物线与X轴的交点。
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,
然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:解:;4a-b=0,.,.抛物线的对称轴为x==-2
Va-b+c>0,
・・・当x二-1时,y>0・・•抛物线与x轴有两个不同的交点且这两个交点之间的距离小于2,
・・・抛物线与x轴的两个交点的横坐标位于-3与-1之间,b2-4ac>0
16a2-4ac=4a(4a-c)>0
Aa>0,b>0,c>0,
/.abc>0,4a-c>0,
4a>c
当x=l时,y=a+b+c>0
故选A.
点评:此题考查了二次函数各系数与函数图象的关系,解题的关键是注意数形结合思想的应
用.
4、抛物线y=ax?+bx+c在x轴的下方,则所要满足的条件是()
A、a<0,b2-4ac<0B、a<0,b2-4ac>0
C^a>0,b2-4ac<0D、a>0,b2-4ac>0
考点:二次函数图象与系数的关系;抛物线与x轴的交点。
分析:抛物线在x轴下方,即可知开口向下,a<0,且与x轴没有交点,△<().
解答:解:•.•抛物线y=ax2+bx+c在x轴的下方,
•••由二次函数图象与系数关系知a<0,且与x轴没有交点,即所对应二次方程没有解,
A=b2-4ac<0,
故选A.
点评:本题考查了二次函数图象与系数关系,即与一元二次方程关系.
8
5、如图所示,二次函数y=ax?+bx+c(aM)的图象经过点(-1,2),且与x轴交点的横坐
标分别为其中下列结论:
xi,x2,0<x2<l,
①abc>0;
②4a-2b+c<0;
③2a-b<0;
(4)b2+8a>4ac.
其中正确的有()
C、3个D、4个
考点:二次函数图象与系数的关系:抛物线与x轴的交点。
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,
然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:解:①当x=-2时,y=4a-2b+c<0,正确;
②根据题意得,对称轴-l<x=-VO,2a-bV0,正确;
③根据题意知:(1)a-b+c=2,(2)4a-2b+c<0,(3)a+b+c<0,
由(1)(2)消去b可得,(4)2a-c<-4,
由(1)(3)消去b可得,(5)a+c<l,
(4)+(5)消去c可得,3a<-3,
所以a<-l,正确;
@V>2,a<0,
•'.4ac-b2V8a,
即b2+8a>4ac,正确.
故选D.
点评:本题考查二次函数y=ax2+bx+c系数符号的确定由抛物线开口方向、对称轴、抛物线
与y轴的交点、抛物线与x轴交点的个数确定.
6>已知:a>b>c,且a+b+c=O,则二次函数y=ax2+bx+c的图象可能是下列图象中的()
9
考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与X轴的交点。
专题:推理填空题。
分析:由a>b>c,且a+b+c=O,确定a>0,c<0,与x轴交点一个是(1,0),采取排除法
即可选出所选答案.
解答:解:A、由图知a>0,-=1,c>o,即b<0,
,已知a>b>c,故本选项错误;
B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;
C、图C中条件满足>b>c,且a+b+c=0,故本选项正确;
D、Va+b+c=0,
即当x=l时a+b+c=0,与图中与X轴的交点不符,故本选项错误.
故选C.
点评:本题主要考查了二次函数的性质,点的坐标特点等知识点,灵活运用性质进行说理是
解此题的关键.题型较好.
7^已知yi=ap<2+bix+ci,y2=a2X?+b2X+C2且满足.则称抛物线yi,丫2互为"友好抛物线”,则
下列关于"友好抛物线”的说法不正确的是()
A、yi,丫2开口方向、开口大小不一定相同B、因为yi,yz的对称轴相同
C、如果V2的最值为m,则vi的最值为kmD、如果y2与x轴的两交点间距离为
d,则yi与x轴的两交点间距离为|k|d
考点:二次函数图象上点的坐标特征;二次函数的最值;抛物线与x轴的交点。
专题:推理填空题;新定义。
分析:根据友好抛物线的条件,ai、a?的符号不一定相同,即可得到开口方向、开口大小不
一定相同,代入对称轴-和即可判断B、C,根据根与系数的关系求出与X轴的两交点的距
离馆-6|和|九(|1|,即可判断D.
解答:解:由已知可知:ai=ka2,bi=kb2,ci=kc2,
A、根据友好抛物线的条件,ai、a?的符号不•定相同,所以开口方向、开口大小不一定相
同,故本选项错误;
B、因为==k,代入-得到对称轴相同,故本选项错误;
C、因为如果丫2的最值是m,则yi的最值是=k・=km,故本选项错误;
D、因为设直线yi于X轴的交点坐标是(e,f)(g,h),则e+g=-,eg=,直线y2于X轴的
交点坐标是(m,n)(d,p),贝(Im+d=-,md=,可求得:|g-e|=|d-m|,所以这种说法
不对,故本选项正确.
故选D.
点评:本题主要考查了二次函数图象上点的坐标特征,抛物线于X轴的交点,二次函数的最
值等知识点解此题的关键是能根据友好抛物线的条件进行判断.
8、已知二次函数的y=ax2+bx+c图象是由的图象经过平移而得到,若图象与x轴交于A、C
(-1,0)两点,与y轴交于D(0,),顶点为B,则四边形ABCD的面积为()
A、9B、10
C、11D、12
考点:待定系数法求二次函数解析式;抛物线与x轴的交点。
专题:综合题。
分析:由题意先得a=,然后把C(-1,0),D(0,)代入解析式得到b=3,则y=x?+3x+;令
y=0,得,X2+3X+=0,得点坐标为(-5,0),AC=-1-(-5)=4;计算-=-3,=-2,得
到顶点B的坐标为(-3,-2).所以S四边阳ABCD=S^ACB+SZ\ACD,
即可得到四边形ABCD的面积.
10
解答:解:由题意得,a=,
y=x+bx+c,
又;抛物线过C(-1,0),D(0,),
/.-b+c=0,c=,
b=3,
・2.
..y=x+1O3x+;
则-=-3,=-2,所以顶点B的坐标为(-3,-2),;
令得,2解得则点坐标为
y=0,X+3X+=0,XI=-1,X2=-5,A(-5,0),AC=-1-(-5)
=4;
S四边形ABCD=S/\ACB+S/kACD=x4x2+x4x=9.
故选A.
点评:本题考查了用待定系数法求抛物线的解析式,二次函数的一般式:y=ax2+bx+c(aw0).同
时考查了求抛物线与x轴交点坐标的方法以及顶点的坐标;考查了在坐标系中求几何图形面
积的方法.
9、(2005•浙江)根据下列表格的对应值,判断方程ax2+bx+c=0(axO,a、b、c为常数)-
A、3<x<3.23B、3.23<x<3,24
C、3.24<x<3.25D、3.25<x<3.26
考点:图象法求一元二次方程的近似根。
分析:根据函数y=ax2+bx+c的图象与x轴的交点就是方程ax?+bx+c=O的根,再根据函数的
增减性即可判断方程ax2+bx+c=O一个解的范围.
解答:解:函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=O的根,
函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;
由表中数据可知:y=0在y=-0.02与y=0.03之间,
,对应的X的值在3.24与3.25之间即3.24<x<3.25.
11
故选c.
点评:掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=O的根的关系是解决此题
的关键所在.
10、根据下列表格的对应值:
X89101112
ax2+bx+c-4.56-2.01-0.381.23.4
判断方程ax2+bx+c=0(a—0,a,b,c为常数)的一个解x的范围是()
A、8<x<9B、9<x<10
C、10<x<llD、ll<x<12
考点:图象法求一元二次方程的近似根。
分析:根据表格知道8Vx<12,y随x的增大而增大,而-0.38<0<1.2,由此即可推出方
程ax2+bx+c=0(a*0,a,b,c为常数)的一个解x的范围.
解答:解:依题意得当8Vx<12,y随x的增大而增大,
而-0.38<0<1.2,
方程ax?+bx+c=O(awO,a,b,c为常数)的一个解x的范围是lOVxVll.
故选C.
点评:此题主要考查了抛物线的增减性,利用抛物线的增减来确定抛物线与x轴交点的坐标
的可能位置.
11、如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程
ax?+bx+c=O的两个根分别是Xi=1.6,X2=()
C、4.4D、以上都不对
考点:图象法求一元二次方程的近似根。
分析:根据图象知道抛物线的对称轴为x=3,根据抛物线是轴对称图象和已知条件即可求出
X2.
解答:解:山抛物线图象可知其对称轴为x=3,
又抛物线是轴对称图象,
抛物线与x轴的两个交点关于x=3对称,
2
而关于x的一元二次方程ax+bx+c=O的两个根分别是xi,x2,
那么两根满足2X3=XI+X2,
ifijXj—1.6>
♦♦x2=4.4.
故选C.
点评:此题主要利用抛物线是轴对称图象的性质确定抛物线与x轴交点坐标,此题还要利用
中点公式.
12、(2011•无锡)如图,抛物线y=x?+l与双曲线y=的交点A的横坐标是1,则关于x的不
等式+x2+l<0的解集是()
12
C、0<x<lD、-l<x<0
考点:二次函数与不等式(组)。
专题:数形结合。
分析:根据图形双曲线丫=与抛物线y-x2+l的交点A的横坐标是1,即可得出关于x的不等
式+x2+l<0的解集.
解答:解:;抛物线y=x?+l与双曲线丫=的交点A的横坐标是1,
关于x的不等式+x2+l<0的解集是-l<x<0.
故选D.
点评:本题主要考查了二次函数与不等式.解答此题时,利用了图象上的点的坐标特征来解
双曲线与二次函数的解析式.
13、(2005•中原区)己知二次函数y=ax?+bx+c的图象如图所示,则关于x的不等式bx+a>0
的解集是()
考点:二次函数与不等式(组)。
分析:由已知图象开口方向向下可以知道a<0,对称轴x=-<0,进一步得到b>0,从而
可以确定不等式bx+a>0的解集.
解答:解:•.•二次函数y=ax?+bx+c的图象开口方向向下,
.,.a<0,
而对称轴x=-<0,
.,.b<0,
故不等式bx+a>0的解集是x<.
故选A.
点评:解答此题的关键是求出对称轴,判断开口方向,然后结合图象判断字母的符号,求不
等式的解集,本题锻炼了学生数形结合的思想方法.
14、方程7x2,(k+13)x+l?-k-2=0(k是实数)有两个实根a、B,且0<aVl,1cB<2,
那么k的取值范围是()
A、3<k<4B、-2<k<-1
C、3VkV4或-2Vk<-1D、无解
考点:二次函数与不等式(组)。
专题:计算题。
13
分析:记f(x)=7x2-(k+13)x+k2-k-2,由题意可得:f(0)>0,f(1)<0,f(2)>
0,解之即可得出答案.
解答:解:记f(x)=7x?-(k+13)x+k2-k-2,
由题意得:,
,k的取值范围是3<k<4或-2<k<-1,
故选C.
点评:本题考查了二次函数与不等式组,难度适中,关键是根据已知条件列出不等式组进行
求解.
15、对于整式X?和2x+3,请你判断下列说法正确的是()
A、对于任意实数X,不等式x?>2x+3都成立B、对于任意实数X,不等式x?<2x+3
都成立
C、x<3时,不等式x?<2x+3成立D、x>3时,不等式x?>2x+3成立
考点:二次函数与不等式(组)。
专题:证明题。
分析:根据x2-2x-3,可化为(x-1)2-4,当(x-1)2-4=0时,可得出x=-1或3,
根据x的范围,可得出x2与2x+3的大小关系.
解答:解:Vx2-2x-3=(x-1)2-4,
,当(x-1)2-4=0时,X=-1或3,
;.x<3时假设x=2,则不等式X2<2X+3不成立.
故选D.
点评:本题考查了二次函数与不等式组,解决问题的关键是将二次三项式配方.
二、解答题(共7小题)
16、已知抛物线y=x2+2px+2p-2的顶点为M,
(1)求证抛物线与x轴必有两个不同交点;
(2)设抛物线与x轴的交点分别为A,B,求实数p的值使^ABM面积达到最小.
考点:抛物线与x轴的交点。
专题:探究型。
分析:(1)先判断出△的符号即可得出结论;
(2)设A(xi,0),B(X2,0),利用两点间的距离公式即可得出|AB|的表达式,设顶点M
(a,b),再把原式化为顶点式的形式,即可得到b=-(p-1)2-1,根据二次函数的最值
及三角形的面积公式即可解答.
解答:解:(1)VA=4p2-8p+8=4(p-1)2+4>0,
•••抛物线与x轴必有两个不同交点.
(2)设A(xi,0),B(X2,0),
UJlJ|AB12=|X2-Xi12=[(X1+X2)2-4xiX2]2=[4p2-8p+8]2=[4(p-1)2+4]2,
/.|AB|=2.
又设顶点M(a,b),由y=(x-p)之-(p-1)2-l.
得b=-(p-1)2-1.
当p=l时,|b|及|AB|均取最小,此时S/\ABM=|AB||b|取最小值1.
点评:本题考查的是抛物线与x轴的交点问题,涉及到的知识点为:根的判别式、两点间的
距离公式、二次函数的顶点式及三角形的面积,熟知以上知识是解答此题的关键.
17、已知:二次函数丫=(2m-1)x2-(5m+3)x+3m+5
(1)m为何值时,此抛物线必与x轴相交于两个不同的点;
14
(2)m为何值时,这两个交点在原点的左右两边;
(3)m为何值时,此抛物线的对称轴是y轴;
(4)m为何值时,这个二次函数有最大值.
考点:抛物线与x轴的交点;二次函数的最值。
专题:计算题。
分析:(1)若抛物线必与x轴相交于两个不同的点,则△>(),且2m-lx0;
(2)若抛物线与x轴的两个交点在原点的左右两边,则需<0即可;
(3)若抛物线的对称轴是y轴,则b=0;
(4)根据a<0时,二次函数的最大值是进行求解.
解答:解:(1)VA=(5m+3)2-4(2m-1)(3m+5)=m2+2m+29>0,
・•.当时,此抛物线必与x轴相交于两个不同的点;
(2)根据题意,得
<0,
则;
(3)根据题意,得
3m+5=0,
则;
(4)根据题意,得
化简,得m2-8m+34=0,
此方程无实数根,
则不存在.
点评:此题考查了二次函数的图象与一元二次方程之间的联系,同时要熟悉抛物线的顶点坐
标公式.
18、已知下表:
(1)求a、b、c的值,并在表内空格处填入正确的数;
(2)请你根据上面的结果判断:
①是否存在实数使二次三项式2的值为若存在,求出这个实数值;若不存在,
X,ax+bx+c0?
请说明理由.
②画出函数y=ax?+bx+c的图象示意图,由图象确定,当x取什么实数时,ax2+bx+c>0.
X012
ax*1
4+bx+c33
考点:二次函数与不等式(组)。
专题:图表型。
分析:(1)设函数的解析式为:y=ax2+bx+c,由图中表格知,当x=0时,y=3,当x=2时y=3,
函数对抽为x=l,根据待定系数法求出函数的解析式,从而求解;
(2)根据方程的△与0的关系来判断是否存在;根据五点作图法画出二次函数的图象,从
而求解.
15
解答:解:(1)由表知,当x=0时,ax2+bx+c=3;当x=l时,ax2=l;当x=2时,ax2+bx+c=3.
a=l,b=-2,c=3,
函数解析式为:y=x?-2x+3,
表格中的空格填0,4,2;
(2)①在x2-2x+3=0中,
•/△=(-2)2-4x1x3=-8<0,
...不存在实数x能使ax2+bx+c=0,
②函数y=x2-2x+3的图象示意图如答图所示,
观察图象得出,无论x取什么实数总有ax2+bx+c>0.
点评:(1)第一问主要考查二次函数的性质及用待定系数法求出函数的解析式;
(2)第二问主要考查一元二次方程与函数的关系及二次函数的图象,函数与x轴的交点的
横坐标就是方程的根,若方程无根说明函数与x轴无交点,其图象在x轴上方或下方,两者
互相转化,要充分运用这一点来解题.
19、(2005.滨州)(I)请将下表补充完整;
16
判别式
A>0A=0A<0
A-b2
二次函数y=ax2
+bx+c=0(a>0)AIV
的图彖
一元二次方程
有两个不相等的实效根均=有两个相等的实数
根
aC+bx+c=0无实数根
-b-、b
(演<与内=W=一丁
(a>0)的根2a5--a2a
使F>0的x的取
X<演或X>/
值范困
不等式^^bxb
xw--------
>0(a>0)2a
的解第
不等式ax:+
+c<0(a>0)
的解篥
(II)利用你在填上表时获得的结论,解不等式-X?-2X+3V0;
(III)利用你在填上表时获得的结论,试写出一个解集为全体实数的一元二次不等式;
(N)试写出利用你在填上表时获得的结论解一元二次不等式ax2+bx+c>0(axO)时的解题
步骤.
考点:二次函数与不等式(组)。
专题:开放型。
分析:解一元二次不等式ax2+bx+c>0(a#0)实质上就是求抛物线图象在x轴上方时,自变
量的取值范围,抛物线开口方向及与x轴的交点情况就决定了函数值什么情况下大于0,即
ax2+bx+c>0.
解答:解:(I)
17
判别式A>0A=0A<01分
A=6"-4ac
二次函2uyj
Ry-ax\
(a>0)的图象
oXOY
一元二次方程
ax2+6x+c=0(a>0)
的根
b全体实数
使}>0的x的取XH--------
2a
值范困.............2分
全体实数
不等式ar2+X<七或X>Xj
+c>0(a>0)的解集
无解无解.............3分
不等式ax'+再<X<X2
+cv0(a>0)的解集
.............4分
(II)由原不等式,X2+2X-3>0,,.•△=4+12>0,
解方程x?+2x-3=0,得不相等的两个实数根分别为xi=-3,X2=l,
;a=l>0,...原不等式的解集为:x<-3^x>l;
(若画出函数y=x?+2x-3的图象,并标出与x轴的交点坐标而得解集的,同样可以)
(III)如x2+x+l>0等,(只要写出满足要求的一个一元二次不等式即可);
(IV)(1)先把二次项系数化为正数;
(2)求判别式的值;
(3)求方程ax2+bx+c=0的实数根;
(4)写出一元二次不等式的解集.
点评:主要考查了二次函数的性质与一元二次不等式之间的关系,以及图象与x轴的位置关
系.这些性质和规律要求掌握.
20、已知二次函数y=ax?+bx+c(a,b,c均为实数且axO)满足条件:对任意实数x都有y“x;
且当0VxV2时,总有yS成立.
(1)求a+b+c的值;
(2)求a-b+c的取值范围.
考点:二次函数与不等式(组)。
专题:综合题。
分析:(1)由题干给出的条件可知两个条件都满足可以发现二次函数经过一个定点.就可以
求出答案;
(2)在已知条件下令x=-l,就能求出取值范围.
解答:解:(1)由题意可知对任意实数x都有y22x.,.当x=l时,y22;且当0VxV2时,总
18
有H成立,
故当x=l,y<2,
.,.当x=l时,y=2,故二次函数y=ax2+bx+c经过(1,2)点,
.*.a+b+c=2:
(2).・•二次函数y=ax?+bx+c对任意实数x都有y>2x,
/.当x=-1时,a-b+c>-2,
故a-b+c>-2.
点评:本题主要考查一元二次函数的性质,以及函数的图象问题,这是一道思维性很强的题,
有很多同学思考不到位.
21、(2007•贵阳)二次函数y=ax?+bx+c(a#0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)写出不等式ax2+bx+c>0的解集;
(3)写出y随x的增大而减小的自变量x的取值范围:
(4)若方程ax?+bx+c=k有两个不相等的实数根,求k的取值范围.
考点:抛物线与x轴的交点;二次函数与不等式(组)。
分析:(1)看二次函数与x轴交点的横坐标即可;
(2)看x轴上方的二次函数的图象相对应的x的范围即可;
(3)在对称轴的右侧即为y随x的增大而减小;
(4)得到相对应的函数看是怎么平移得到的即可.
解答:解:(1)已知抛物线y=ax?+bx+c(awO),可得xi=l,X2=3;(2分)
(2)依题意因为ax2+bx+c>0,得出x的取值范围为l<x<3;(2分)
(3)如图可知,当y随x的增大而减小,自变量x的取值范围为x>2;(2分)
(4)由顶点(2,2)设方程为a(x-2)2+2=0,
•.•二次函数与x轴的2个交点为(1,0)),(3,0),
/.a=-2,
工抛物线方程为y=-2(x-2)2+2,
y=-2(x-2)2+2-k实际上是原曲线下移k个单位,
有图形知,当k<2时,曲线与x轴有两个交点.
故k<2.(4分)
点评:本题考查的是二次函数的图象与实际应用的综合题;采用数形结合的方法可使问题简
化.
22、阅读材料,解答问题.
例.用图象法解一元二次不等式:X2-2X-3>0.
19
解:设y=x?-2x-3,则y是x的二次函数.:a=l>0,...抛物线开口向上.
又:当y=0时,x2-2x-3=0,解得xi=-l,x2=3.,由此得抛物线y=x2-2x-3的大致图象
如图所示.观察函数图象可知:当x<-l或x>3时,y>0.,x2-2x-3>0的解集是:x
<-1或x>3.
(1)观察图象,直接写出元二次不等式:x2-2x-3<0的解集是-l<x<3:
(2)仿照上例,用图象法解一元二次不等式:x2-5x+6<0.(画出大致图象).
专题:计算题。
分析:(1)观察图象即可写出一元二次不等式:x2-2x-3<0的解集;
(2)先设函数解析式,根据a的值确定抛物线的开口向上,再找出抛物线与x轴相交的两
点,就可以画出抛物线,根据y<0确定一元二次不等式x2-2x-3<0的解集.
解答:解:(1)观察图象,可得一元二次不等式X2-2x-3V0的解集是:
-l<x<3
(2)设y=x?-5x+6,则y是x的二次函数.
•.飞=1>0,...抛物线开口向上.
又当y=0时,x2-5x+6=0,
解得x『2,X2=3.
由此得抛物线y=x2-5x+6的大致图象如图所示.
点评:本题主要考查在直角坐标系中利用二次函数图象解不等式,可作图利用交点直观求解
集.
20
三、填空题(共4小题)
23、二次函数y=ax?+bx+c(axO)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax?+bx+c=O的两个根.x尸1,x尸3:
(2)写出不等式ax2+bx+c>0的解集.l<x<3;
(3)写出y随x的增大而减小的自变量x的取值范围.x>2;
(4)若方程ax?+bx+c=k有两个不相等的实数根,求k的取值范围.k<2
考点:抛物线与x轴的交点;二次函数与不等式(组
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年第二学期北师大版数学八年级下册期末模拟试题
- 金融服务营销 教学实施方案
- 工业园区规划与绿色发展策略
- 工业智能化改造及自动化生产研究
- 工业旅游开发与推广策略
- 工业建筑设计原理及实践
- 工业废水处理后的环境监测评估
- 工业废水处理的安全生产流程优化
- 工业机器人技术对劳动力的影响与挑战
- 工业污染防治的技术手段与实践
- 新媒体视频节目制作 课件 学习领域1 新闻短视频制作
- 福建省泉州市晋江第一中学高一物理摸底试卷含解析
- 肝硬化的中医护理查房课件
- 音乐(人音全国版)四年级生日快乐变奏曲-2课件
- 健康宣教之青光眼掌握预防疾病的技巧
- 生物实验室教学仪器和设备配置表
- 蒸汽发生器专项应急预案
- 控制系统的滞后校正设计
- 西方现代思想史-讲义
- 2023分布式光伏验收规范
- 厂房分布式光伏系统施工进度计划横道图
评论
0/150
提交评论