




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,边长为a,b的长方形的周长为14,面积为10,则a3b+ab3的值为()A.35 B.70 C.140 D.2902.如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0) B.(1,0) C.(,0) D.(,0)3.如果,、分别对应、,且,那么下列等式一定成立的是()A. B.的面积:的面积C.的度数:的度数 D.的周长:的周长4.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.cm B.3cm C.4cm D.4cm5.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCD=3,则S△AOC为()A.2 B.3 C.4 D.66.如图,在平直角坐标系中,过轴正半轴上任意一点作轴的平行线,分别交函数、的图象于点、点.若是轴上任意一点,则的面积为()A.9 B.6 C. D.37.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知sinα=,则小车上升的高度是:A.5米 B.6米 C.6.5米 D.7米8.以下事件属于随机事件的是()A.小明买体育彩票中了一等奖B.2019年是中华人民共和国建国70周年C.正方体共有四个面D.2比1大9.已知点C为线段AB延长线上的一点,以A为圆心,AC长为半径作⊙A,则点B与⊙A的位置关系为()A.点B在⊙A上 B.点B在⊙A外 C.点B在⊙A内 D.不能确定10.如图所示,几何体的左视图为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知反比例函数的图象经过点,若点在此反比例函数的图象上,则________.12.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论:①abc>0;②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0,其中正确结论的序号为_____.13.庆“元旦”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,求这次有多少队参加比赛?若设这次有x队参加比赛,则根据题意可列方程为_____.14.如图,的半径长为,与相切于点,交半径的延长线于点,长为,,垂足为,则图中阴影部分的面积为_______.15.若边长为2的正方形内接于⊙O,则⊙O的半径是___________.16.已知如图,中,,点在上,,点、分别在边、上移动,则的周长的最小值是__________.17.如图,在△ABC中,AB=AC=3,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于点M和点N,则线段MN的长为_____.18.如图,在平面直角坐标系中,正方形ABCD的三个顶点A、B、D均在抛物线y=ax2﹣4ax+3(a<0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则AC长为_____.三、解答题(共66分)19.(10分)解一元二次方程(1)(2)20.(6分)福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于于山风景区,利用标杆可以估算白塔的高度.如图,标杆高,测得,,求白塔的高.21.(6分)如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)先将竖直向下平移5个单位长度,再水平向右平移1个单位长度得到,请画出;(2)将绕点顺时针旋转,得,请画出;(3)求线段变换到的过程中扫过区域的面积.22.(8分)已知反比例函数的图象过点P(-1,3),求m的值和该反比例函数的表达式.23.(8分)已知关于x的一元二次方程x2-(2m+3)x+m2+2=0。(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为,且满足,求实数m的值。24.(8分)如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于多少;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.25.(10分)解方程:3x(x﹣1)=2﹣2x.26.(10分)如图,是等边三角形,顺时针方向旋转后能与重合.(1)旋转中心是___________,旋转角度是___________度,(2)连接,证明:为等边三角形.
参考答案一、选择题(每小题3分,共30分)1、D【分析】由题意得,将所求式子化简后,代入即可得.【详解】由题意得:,即又代入可得:原式故选:D.【点睛】本题考查了长方形的周长和面积公式、多项式的因式分解、以及完全平方公式,熟练掌握相关内容是解题的关键.2、D【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=-1,b=,∴直线AB的解析式是y=-x+,当y=0时,x=,即P(,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.3、D【解析】相似三角形对应边的比等于相似比,面积之比等于相似比的平方,对应角相等.【详解】根据相似三角形性质可得:A:BC和DE不是对应边,故错;B:面积比应该是,故错;C:对应角相等,故错;D:周长比等于相似比,故正确.故选:D【点睛】考核知识点:相似三角形性质.理解基本性质是关键.4、C【解析】利用扇形的弧长公式可得扇形的弧长;根据扇形的弧长=圆锥的底面周长,让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高:∵扇形的弧长=cm,圆锥的底面半径为4π÷2π=2cm,∴这个圆锥形筒的高为cm.故选C.5、D【分析】先求CD长度,再求点B坐标,再求函数解析式,可求得面积.【详解】因为,BD=3,S△BCD==3,所以,,解得,CD=2,因为,C(2,0)所以,OD=4,所以,B(4,3)把B(4,3)代入y=,得k=12,所以,y=所以,S△AOC=故选D【点睛】本题考核知识点:反比例函数.解题关键点:熟记反比例函数性质.6、C【分析】连接OA、OB,利用k的几何意义即得答案.【详解】解:连接OA、OB,如图,因为AB⊥x轴,则AB∥y轴,,,,所以.故选C.【点睛】本题考查了反比例函数系数k的几何意义,属于常考题型,熟知k的几何意义是关键.7、A【分析】在,直接根据正弦的定义求解即可.【详解】如图:AB=13,作BC⊥AC,∵∴.故小车上升了5米,选A.【点睛】本题考查解直角三角形的应用-坡度坡角问题.解决本题的关键是将实际问题转化为数学问题,构造,在中解决问题.8、A【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件,依据随机事件定义可以作出判断.【详解】A、小明买体育彩票中了一等奖是随机事件,故本选项正确;B、2019年是中华人民共和国建国70周年是确定性事件,故本选项错误;C、正方体共有四个面是不可能事件,故本选项错误;D、2比1大是确定性事件,故本选项错误;故选:A.【点睛】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、C【分析】根据题意确定AC>AB,从而确定点与圆的位置关系即可.【详解】解:∵点C为线段AB延长线上的一点,∴AC>AB,∴以A为圆心,AC长为半径作⊙A,则点B与⊙A的位置关系为点B在⊙A内,故选:C.【点睛】本题考查的知识点是点与圆的位置关系,根据题意确定出AC>AB是解此题的关键.10、A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形故选:A.【点睛】本题考查简单组合体的三视图,难度不大.二、填空题(每小题3分,共24分)11、【分析】将点(1,3)代入y即可求出k+1的值,再根据k+1=xy解答即可.【详解】∵反比例函数的图象上有一点(1,3),∴k+1=1×3=6,又点(-3,n)在反比例函数的图象上,∴6=-3×n,解得:n=-1.故答案为:-1.【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.12、②③.【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【详解】由图象可知,抛物线开口向下,a<0,对称轴在y轴右侧,a、b异号,b>0,与y轴交于正半轴,c>0,所以abc<0,因此①是错误的;当y=0时,抛物线与x轴交点的横坐标就是ax2+bx+c=0的两根,由图象可得x1=﹣1,x2=3;因此②正确;对称轴为x=1,即﹣=1,也就是2a+b=0;因此③正确,∵a<0,a2>0,b>0,c>0,∴4a2+2b+c>0,因此④是错误的,故答案为:②③.【点睛】此题考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.13、=45【分析】设这次有x队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:场.根据题意可知:此次比赛的总场数=45场,依此等量关系列出方程.【详解】解:设这次有x队参加比赛,则此次比赛的总场数为场,根据题意列出方程得:=45,故答案是:.【点睛】考查了由实际问题抽象出一元二次方程,本题的关键在于理解清楚题意,找出合适的等量关系,列出方程,再求解.需注意赛制是“单循环形式”,需使两两之间比赛的总场数除以1.14、【分析】由已知条件易求直角三角形AOH的面积以及扇形AOC的面积,根据,计算即可.【详解】∵BA与⊙O相切于点A,
∴AB⊥OA,
∴∠OAB=90°,
∵OA=2,AB=2,∴,∵,∴∠B=30°,
∴∠O=60°,∵,∴∠OHA=90°,
∴∠OAH=30°,
∴,∴,∴.故答案为:.【点睛】本题考查了切线的性质、勾股定理的运用以及扇形的面积计算,解答本题的关键是掌握扇形的面积公式.15、【分析】连接OB,CO,由题意得∠BOC=90°,OC=OB,在Rt△BOC中,根据勾股定理即可求解.【详解】解:连接OB,OC,如图∵四边形ABCD是正方形且内接于⊙O∴∠BOC=90°,
∴在Rt△BOC中,利用勾股定理得:∵OC=OB,正方形边长=2∴利用勾股定理得:则∴.
∴⊙O的半径是,
故答案为:.【点睛】此题主要考查了正多边形和圆,本题需仔细分析图形,利用勾股定理即可解决问题.16、【分析】作P关于AO,BO的对称点E,F,连接EF与OA,OB交于MN,此时△PMN周长最小;连接OE,OF,作OG⊥EF,利用勾股定理求出EG,再根据等腰三角形性质可得EF.【详解】作P关于AO,BO的对称点E,F,连接EF与OA,OB交于MN,此时△PMN周长最小;连接OE,OF,作OG⊥EF根据轴对称性质:PM=EM,PN=NF,OE=OP,OE=OF=OP=10,∠EOA=∠AOP,∠BOF=∠POB∵∠AOP+∠POB=60°∴∠EOF=60°×2=120°∴∠OEF=∵OG⊥EF∴OG=OE=∴EG=所以EF=2EG=10由已知可得△PMN的周长=PM+MN+PN=EF=10故答案为:10【点睛】考核知识点:轴对称,勾股定理.根据轴对称求最短路程,根据勾股定理求线段长度是关键.17、.【分析】根据三角形的面积公式求出BC边上的高=3,根据△ADE∽△ABC,求出正方形DEFG的边长为2,根据等于高之比即可求出MN.【详解】解:作AQ⊥BC于点Q.∵AB=AC=3,∠BAC=90°,∴BC=AB=6,∵AQ⊥BC,∴BQ=QC,∴BC边上的高AQ=BC=3,∵DE=DG=GF=EF=BG=CF,∴DE:BC=1:3又∵DE∥BC,∴AD:AB=1:3,∴AD=,DE=AD=2,∵△AMN∽△AGF,DE边上的高为1,∴MN:GF=1:3,∴MN:2=1:3,∴MN=.故答案为.【点睛】本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大,作辅助线AQ⊥BC是解题的关键.18、1.【解析】试题解析:抛物线的对称轴x=-=2,点B坐标(0,3),∵四边形ABCD是正方形,点A是抛物线顶点,∴B、D关于对称轴对称,AC=BD,∴点D坐标(1,3)∴AC=BD=1.考点:1.正方形的性质;2.二次函数的性质.三、解答题(共66分)19、(1),;(2),【分析】(1)根据公式法即可求解;(2)根据因式分解法即可求解.【详解】(1)a=2,b=-5,c=1∴b2-4ac=25-8=17>0故x=∴,(2)∴3x-2=0或-x+4=0故,.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知公式法及因式分解法的运用.20、为米.【分析】先证明,然后利用相似三角形的性质得到,从而代入求值即可.【详解】解:依题意,得,,∴.∵,∴,∴.∵,,,∴,∴,∴,∴白塔的高为米.【点睛】本题考查相似三角形的实际应用,掌握相似三角形对应边成比例是本题的解题关键.21、(1)答案见解析;(2)答案见解析;(3)【分析】(1)依据平移的方向和距离,即可得到;(2)依据旋转的方向和距离,即可得到;(3)依据扇形的面积计算公式,即可得到线段B1C1变换到B2C1的过程中扫过区域的面积.【详解】(1)如图为所求,(2)如图为所求,(3)B1C1=∴线段B1C1变换到B2C1的过程中扫过区域的面积为:.【点睛】本题考查了作图−旋转变换和平移变换及扇形面积求解,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22、2;.【分析】把点P的坐标代入函数解析式求得m的值即可【详解】解:把点P(-1,3)代入,得.解得.把m=2代入,得,即.∴反比例函数的表达式为.【点睛】本题考查了待定系数法确定函数关系式,反比例函数图象上点的坐标特征.难度不大,熟悉函数图象的性质即可解题.23、(1);(1)1【分析】(1)根据方程有实数根结合根的判别式,即可得出关于m的一元一次不等式,解之即可得出结论;(1)利用根与系数的关系可得出x1+x1=1m+3,x1•x1=m1+1,结合x11+x11=31+x1x1即可得出关于m的一元二次方程,解之即可得出m的值.【详解】解:(1)∵方程x1-(1m+3)x+m1+1=0有实数根,∴△=[-(1m+3)]1-4(m1+1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学习心理与教学方法的优化研究
- 混合学习未来教育的创新模式
- 全球化背景下国际教育的政策支持研究
- 中国教育培训机构市场竞争策略分析
- 心理驱动教育心理学在学生自我管理中的应用
- 教育技术趋势报告提升教学效果的科技工具
- 基于创新教育政策的科技产业未来规划及战略部署探讨
- 智慧办公未来校园管理的新趋势
- 商业培训中的教育创新提升培训效果的方法
- 教育科技与心理辅导的结合策略探索
- 云南省曲靖市宣威市民中2025届高一化学第二学期期末检测试题含解析
- 2024年宁夏银川金凤区社区专职工作者考试真题
- 2025至2030全球及中国帆船行业产业运行态势及投资规划深度研究报告
- 北京海淀街道社区卫生服务中心招聘笔试真题2024
- 新疆天富能源股份有限公司2024年度商誉减值测试资产评估报告
- 2025年黑龙江龙东地区中考数学试卷真题及答案详解(精校打印)
- 泄密警示教育专题培训
- 肿瘤标志物实验室解读
- 2025年中国水下测深仪市场调查研究报告
- 2025年湖北省中考英语试卷真题(含答案)
- 2023衡水市事业单位考试历年真题
评论
0/150
提交评论