




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若反比例函数的图象经过点,则这个函数的图象一定还经过点()A. B. C. D.2.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形3.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.2D.44.如图是由几个相同的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,这个几何体的主视图是()A. B. C. D.5.若x=2y,则的值为()A.2 B.1 C. D.6.如图,一段公路的转弯处是一段圆弧,则的展直长度为()A.3π B.6π C.9π D.12π7.若,则()A. B. C. D.8.在中,,垂足为D,则下列比值中不等于的是()A. B. C. D.9.下列函数的对称轴是直线的是()A. B. C. D.10.方程(x+1)2=4的解是()A.x1=﹣3,x2=3 B.x1=﹣3,x2=1 C.x1=﹣1,x2=1 D.x1=1,x2=3二、填空题(每小题3分,共24分)11.如图,已知四边形ABCD是菱形,BC∥x轴,点B的坐标是(1,),坐标原点O是AB的中点.动圆⊙P的半径是,圆心在x轴上移动,若⊙P在运动过程中只与菱形ABCD的一边相切,则点P的横坐标m的取值范围是_________.12.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为_____.13.一个不透明的布袋里装有2个红球,4个白球和a个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球是黄球的概率为0.4,则a=_____.14.如果一元二次方程经过配方后,得,那么a=________.15.已知点P是正方形ABCD内部一点,且△PAB是正三角形,则∠CPD=_____度.16.如图,点O是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB和弧BC都经过圆心O,则阴影部分的面积为______17.在相似的两个三角形中,已知其中一个三角形三边的长是3,4,5,另一个三角形有一边长是2,则另一个三角形的周长是.18.已知∠A=60°,则tanA=_____.三、解答题(共66分)19.(10分)如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.20.(6分)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.21.(6分)解答下列问题:(1)计算:;(2)解方程:;22.(8分)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的面积.(结果保留π)23.(8分)在一个不透明的盒子里装有4个分别标有:﹣1、﹣2、0、1的小球,它们的形状、大小完全相同,小芳从盒子中随机取出一个小球,记下数字为x,作为点M的横坐标:小华在剩下的3个小球中随机取出一个小球,记下数字为y,作为点M的纵坐标.(1)用画树状图或列表的方式,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=的图象上的概率.24.(8分)计算.25.(10分)已知二次函数y=x2-2mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.26.(10分)如图,点在以为直径的上,的平分线交于点,过点作的平行线交的延长线于点.(1)求证:是的切线;(2)若,,求的长度.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据反比例函数的定义,得,分别判断各点的乘积是否等于,即可得到答案.【详解】解:∵反比例函数的图象经过点,∴;∵,故A符合题意;∵,,,故B、C、D不符合题意;故选:A.【点睛】本题考查了反比例函数的定义,解题的关键是熟记定义,熟练掌握.2、C【解析】试题分析:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误.B、当AB=AD,CB=CD时,无法得到四边形ABCD是菱形,故此选项错误.C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形.∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确.D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.故选C.3、C【分析】过D作AE的垂线交AE于F,交AC于D′,再过D′作AP′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.【详解】作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴P′D′=22,即DQ+PQ的最小值为22,故答案为C.【点睛】本题考查了正方形的性质以及角平分线的性质和全等三角形的判定和性质和轴对称-最短路线问题,根据题意作出辅助线是解答此题的4、A【分析】由几何体的俯视图观察原立体图形中正方体的位置关系【详解】由俯视图可以看出一共3列,右边有前后2排,后排是2个小正方体,前面一排有1个小正方体,其他两列都是1个小正方体,由此可判断出这个几何体的主视图是A.故选A.5、A【解析】将x=2y代入中化简后即可得到答案.【详解】将x=2y代入得:,故选:A.【点睛】此题考查代数式代入求值,正确计算即可.6、B【解析】分析:直接利用弧长公式计算得出答案.详解:的展直长度为:=6π(m).故选B.点睛:此题主要考查了弧长计算,正确掌握弧长公式是解题关键.7、B【解析】根据合并性质解答即可,对于实数a,b,c,d,且有b≠0,d≠0,如果,则有.【详解】,,,故选:.【点睛】本题考查了比例的性质,熟练掌握合比性质是解答本题的关键.合比性质:在一个比例等式中,第一个比例的前后项之和与第一个比例的后项的比,等于第二个比例的前后项之和与第二个比例的后项的比.8、D【分析】利用锐角三角函数定义判断即可.【详解】在Rt△ABC中,sinA=,在Rt△ACD中,sinA=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sinA=sin∠BCD=,故选:D.【点睛】此题考查了锐角三角函数的定义,熟练掌握锐角三角函数定义是解本题的关键.9、C【分析】根据二次函数的性质分别写出各选项中抛物线的对称轴,然后利用排除法求解即可.【详解】A、对称轴为y轴,故本选项错误;B、对称轴为直线x=3,故本选项错误;C、对称轴为直线x=-3,故本选项正确;D、∵=∴对称轴为直线x=3,故本选项错误.故选:C.【点睛】本题考查了二次函数的性质,主要利用了对称轴的确定,是基础题.10、B【解析】利用直接开平方的方法解一元二次方程得出答案.【详解】(x+1)2=4则x+1=±2,解得:x1=−1-2=-3,x2=−1+2=1.故选B.【点睛】此题主要考查了直接开平方法解方程,正确开平方是解题关键.二、填空题(每小题3分,共24分)11、或或或【分析】若⊙P在运动过程中只与菱形ABCD的一边相切,则需要对此过程分四种情况讨论,根据已知条件计算出m的取值范围即可.【详解】解:由B点坐标(1,),及原点O是AB的中点可知AB=2,直线AB与x轴的夹角为60°,又∵四边形ABCD是菱形,∴AD=AB=BC=CD=2,设DC与x轴相交于点H,则OH=4,(1)当⊙P与DC边相切于点E时,连接PE,如图所示,由题意可知PE=,PE⊥DC,∠PHE=60°,∴PH=2,∴此时点P坐标为(-6,0),所以此时.(2)当⊙P只与AD边相切时,如下图,∵PD=,∴PH=1,∴此时,当⊙P继续向右运动,同时与AD,BC相切时,PH=1,所以此时,∴当时,⊙P只与AD相切;,(3)当⊙P只与BC边相切时,如下图,⊙P与AD相切于点A时,OP=1,此时m=-1,⊙P与AD相切于点B时,OP=1,此时m=1,∴当,⊙P只与BC边相切时;,(4)当⊙P只与BC边相切时,如下图,由题意可得OP=2,∴此时.综上所述,点P的横坐标m的取值范围或或或.【点睛】本题考查圆与直线的位置关系,加上动点问题,此题难度较大,解决此题的关键是能够正确分类讨论,并根据已知条件进行计算求解.12、【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=S扇形AOC=则图中阴影部分面积为S扇形AOC﹣S菱形ABCO=故答案为【点睛】本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积和扇形的面积,有一定的难度.13、1【解析】根据黄球个数÷总球的个数=黄球的概率,列出算式,求出a的值即可.【详解】根据题意得:=0.1,解得:a=1,经检验,a=1是原分式方程的解,则a=1;故答案为1.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14、-6【解析】∵,∴,∴a=-6.15、1【解析】如图,先求出∠DAP=∠CBP=30°,由AP=AD=BP=BC,就可以求出∠PDC=∠PCD=15°,进而得出∠CPD的度数.【详解】解:如图,∵四边形ABCD是正方形,∴AD=AB=BC,∠DAB=∠ABC=90°,∵△ABP是等边三角形,∴AP=BP=AB,∠PAB=∠PBA=60°,∴AP=AD=BP=BC,∠DAP=∠CBP=30°.∴∠BCP=∠BPC=∠APD=∠ADP=75°,∴∠PDC=∠PCD=15°,∴∠CPD=180°﹣∠PDC﹣∠PCD=180°﹣15°﹣15°=1°.故答案为1.【点睛】本题考查了正方形的性质的运用,等边三角形的性质的运用,等腰三角形的性质的运用,解答时运用三角形内角和定理是关键.16、3π【分析】作OD⊥AB于点D,连接AO,BO,CO,求出∠OAD=30°,得到∠AOB=120°,进而求得∠AOC=120°,从而得到阴影面积为圆面积的,再利用面积公式求解.【详解】如图,作OD⊥AB于点D,连接AO,BO,CO,∵OD=AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S扇形AOC==3π.故答案为:3π.【点睛】本题考查了学生转化面积的能力,将不规则的面积转化为规则的面积是本题的解题关键.17、8或6或【分析】由一个三角形三边的长是3,4,5,可求得其周长,又由相似三角形周长的比等于相似比,分别从2与3对应,2与4对应,2与5对应,去分析求解即可求得答案.【详解】解:∵一个三角形三边的长是3,4,5,
∴此三角形的周长为:3+4+5=12,
∵在相似的两个三角形中,另一个三角形有一边长是2,
∴若2与3对应,则另一个三角形的周长是:;若2与4对应,则另一个三角形的周长是:;若2与5对应,则另一个三角形的周长是:.【点睛】本题考查相似三角形性质.熟知相似三角形性质,解答时由于对应边到比发生变化,会得到不同到结果,本题难度不大,但易漏求,属于基础题.18、【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.三、解答题(共66分)19、(1)见解析;(2)AD=4.5.【分析】(1)若证明BC是半圆O的切线,利用切线的判定定理:即证明AB⊥BC即可;
(2)因为OC∥AD,可得∠BEC=∠D=90°,再有其他条件可判定△BCE∽△BAD,利用相似三角形的性质:对应边的比值相等即可求出AD的长.【详解】(1)证明:∵AB是半圆O的直径,
∴BD⊥AD,
∴∠DBA+∠A=90°,
∵∠DBC=∠A,
∴∠DBA+∠DBC=90°即AB⊥BC,
∴BC是半圆O的切线;(2)解:∵OC∥AD,
∴∠BEC=∠D=90°,
∵BD⊥AD,BD=6,
∴BE=DE=3,
∵∠DBC=∠A,
∴△BCE∽△BAD,,即;∴AD=4.5【点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.20、(1)AD=9;(2)AD=【分析】(1)连接BE,证明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6,AE=3,求出BE,得到答案;(2)连接BE,证明△ACD∽△BCE,得到,求出BE的长,得到AD的长.【详解】解:(1)如图1,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE=9,∴AD=9;(2)如图2,连接BE,在Rt△ACB中,∠ABC=∠CED=30°,tan30°=,∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD,∴△ACD∽△BCE,∴,∵∠BAC=60°,∠CAE=30°,∴∠BAE=90°,又AB=6,AE=8,∴BE=10,∴AD=.考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理.21、(1);(2),【分析】(1)先按照二次根式的乘除法计算,然后去条绝对值,再计算加减法;(2)采用配方法解方程即可.【详解】解:(1)原式;(2)∴,【点睛】本题考查了二次根式的混合运算与解一元二次方程,熟练掌握二次根式的乘除运算法则和配方法是解题的关键.22、(1)见解析;(2)169π(cm2).【分析】(1)根据垂径定理,即可得=,根据同弧所对的圆周角相等,证出∠BAC=∠BCD,再根据等边对等角,即可得到∠BAC=∠ACO,从而证出∠ACO=∠BCD;(2)根据垂径定理和勾股定理列出方程,求出圆的半径,即可求出圆的面积.【详解】解:(1)∵AB为⊙O的直径,AB⊥CD,∴=.∴∠BAC=∠BCD.∵OA=OC,∴∠BAC=∠ACO.∴∠ACO=∠BCD;(2)∵AB为⊙O的直径,AB⊥CD,∴CE=CD=×24=12(cm).在Rt△COE中,设CO为r,则OE=r﹣8,根据勾股定理得:122+(r﹣8)2=r2解得r=1.∴S⊙O=π×12=169π(cm2).【点睛】此题考查的是垂径定理、等腰三角形的性质、圆周角定理推论和求圆的面积,掌握垂径定理和勾股定理的结合是解决此题的关键.23、(1)见解析;(2)【分析】(1)画树状图即可得到12种等可能的结果数;(2)利用反比例函数图象上点的坐标特征得到点(﹣2,1)和点(1,﹣2)满足条件,然后根据概率公式计算,即可.【详解】(1)画树状图为:共有12种等可能的结果,它们为(﹣1,﹣2),(﹣1,0),(﹣1,1),(﹣2,﹣1),(﹣2,0),(﹣2,1),(0,﹣1),(0,﹣2),(0,1),(1,﹣1),(1,﹣2),(1,0);(2)∵点M(x,y)在函数y=的图象上的点有(﹣2,1),(1,﹣2),∴点M(x,y)在函数y=的图象上的概率==.【点睛】本题主要考查简单事件的概率和反比例函数的综合,画树状图,是解题的关键.24、-1【分析】直接利用绝对值的性质以及负指数幂的性质分别化简得出答案.【详解】解:原式=2﹣(2﹣2)﹣12=2﹣2+2﹣12=﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.25、(1)证明见解析;(2)k≥.【分析】(1)根据判别式的值得到△=(2m-1)2+3>0,然后根据判别式的意义得到结论;
(2)把(0,-2)带入平移后的解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业互联网背景下2025年RFID技术在智能工厂人员管理中的应用研究报告
- 医疗美容行业美容护肤品市场产品创新与市场潜力评估报告
- 电源电压调节器电路可靠性改进方法研究合同
- 个人养老金制度对2025年金融市场投资收益提升与风险控制的影响报告
- 2025年辅警招聘考试试题库附完整答案(有一套)
- 租车运输合同(热)
- GB 7300.505-2025饲料添加剂第5部分:微生物凝结芽孢杆菌
- 媒体投放合作协议
- 农业信息合作技术推广协议
- 农业生产物资供需合作协议条款
- 监狱综合管理系统可行性分析报告
- 新版器械GCP培训课件
- 中试车间基础管理规范与操作手册
- 洗煤厂设备管理
- 所有分类恶性心律失常的识别与护理
- 隔膜工艺流程
- 2022水利工程施工资料管理规程
- 履带吊起重吊装方案
- 心肌酶谱5项临床意义
- 《智慧政务架构》课件
- 2025年眼科医院近视干预计划
评论
0/150
提交评论