版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在比例尺为1:1000000的地图上量得A,B两地的距离是20cm,那么A、B两地的实际距离是()A.2000000cm B.2000m C.200km D.2000km2.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6 C.3 D.93.如图,已知点在反比例函数上,轴,垂足为点,且的面积为,则的值为()A. B. C. D.4.如果某物体的三视图是如图所示的三个图形,那么该物体的形状是A.正方体B.长方体C.三棱柱D.圆锥5.如图,在平面直角坐标系中,的顶点在第一象限,点在轴的正半轴上,,,将绕点逆时针旋转,点的对应点的坐标是()A. B. C. D.6.对于反比例函数,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小7.已知二次函数,则下列说法:①其图象的开口向上;②其图象的对称轴为直线;③其图象顶点坐标为;④当时,随的增大而减小.其中说法正确的有()A.1个 B.2个 C.3个 D.4个8.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×59.下列事件中是不可能事件的是()A.三角形内角和小于180° B.两实数之和为正C.买体育彩票中奖 D.抛一枚硬币2次都正面朝上10.已知点在同一个函数的图象上,这个函数可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为__________.12.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.13.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.14.如图,是⊙的一条弦,⊥于点,交⊙于点,连接.如果,,那么⊙的半径为_________.15.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=_____.16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.17.将抛物线y=x2﹣2x+3向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为____________________________18.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.三、解答题(共66分)19.(10分)用配方法解一元二次方程20.(6分)图中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.线段和的端点均在格点上.(1)在图中画出以为一边的,点在格点上,使的面积为4,且的一个角的正切值是;(2)在图中画出以为顶角的等腰(非直角三角形),点在格点上.请你直接写出的面积.21.(6分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?22.(8分)国内猪肉价格不断上涨,已知今年10月的猪肉价格比今年年初上涨了80%,李奶奶10月在某超市购买1千克猪肉花了72元钱.(1)今年年初猪肉的价格为每千克多少元?(2)某超市将进货价为每千克55元的猪肉按10月价格出售,平均一天能销售出100千克,随着国家对猪肉价格的调控,超市发现猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪肉每天有1800元的利润,并且尽可能让顾客得到实惠,猪肉的售价应该下降多少元?23.(8分)某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y(件)与销售单价x(元)之间存在着如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.24.(8分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.25.(10分)某商场销售一种商品,若将50件该商品按标价打八折销售,比按原标价销售这些商品少获利200元.求该商品的标价为多少元;已知该商品的进价为每件12元,根据市场调查:若按中标价销售,该商场每天销售100件;每涨1元,每天要少卖5件那么涨价后要使该商品每天的销售利润最大,应将销售价格定为每件多少元?最大利润是多少?26.(10分)如图,方格纸中的每个小正方形的边长都为1,在建立平面直角坐标系后,△ABC的顶点均在格点上.(1)以点A为旋转中心,将△ABC绕点A逆时针旋转90°得到△AB1C1,画出△AB1C1.(2)画出△ABC关于原点O成中心对称的△A2B2C2,若点C的坐标为(﹣4,﹣1),则点C2的坐标为.
参考答案一、选择题(每小题3分,共30分)1、C【分析】比例尺=图上距离:实际距离,根据比例尺关系可直接得出A、B两地的实际距离.【详解】根据比例尺=图上距离:实际距离,得A、B两地的实际距离为20×1000000=20000000(cm),20000000cm=200km.故A、B两地的实际距离是200km.故选:C.【点睛】本题考查了线段的比,能够根据比例尺正确进行计算,注意单位的转化.2、B【分析】连接DF,根据垂径定理得到,得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【详解】解:连接DF,∵直径CD过弦EF的中点G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,
∴∠CFD=90°,
∴CF=CD•cos∠DCF=12×=,故选B.【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.3、C【分析】根据反比例函数中的比例系数k的几何意义即可得出答案.【详解】∵点在反比例函数,的面积为故选:C.【点睛】本题主要考查反比例函数中的比例系数k的几何意义,掌握反比例函数中的比例系数k的几何意义是解题的关键.4、C【解析】解:只有三棱柱的俯视图为三角形,故选C.5、D【分析】过点作x轴的垂线,垂足为M,通过条件求出,MO的长即可得到的坐标.【详解】解:过点作x轴的垂线,垂足为M,∵,,∴,,∴,在直角△中,,,∴,,∴OM=2+1=3,∴的坐标为.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6、C【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化7、B【分析】利用二次函数的图象和性质逐一对选项进行分析即可.【详解】①因为其图象的开口向上,故正确;②其图象的对称轴为直线,故错误;③其图象顶点坐标为,故错误;④因为抛物线开口向上,所以在对称轴右侧,即当时,随的增大而减小,故正确.所以正确的有2个故选:B.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.8、D【分析】根据关键语句“矩形衬纸的面积为照片面积的3倍”列出方程求解即可.【详解】解:设照片四周外露衬纸的宽度为x英寸,根据题意得:(7+2x)(5+2x)=3×7×5,
故选:D【点睛】找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.9、A【解析】根据三角形的内角和定理,可知:“三角形内角和等于180°”,故是不可能事件;根据实数的加法,可知两实数之和可能为正,可能是0,可能为负,故是可能事件;根据买彩票可能中奖,故可知是可能事件;根据硬币的特点,抛一枚硬币2次有可能两次都正面朝上,故是可能事件.故选A.10、D【解析】由点的坐标特点,可知函数图象关于轴对称,于是排除选项;再根据的特点和二次函数的性质,可知抛物线的开口向下,即,故选项正确.【详解】点与点关于轴对称;由于的图象关于原点对称,因此选项错误;由可知,在对称轴的右侧,随的增大而减小,对于二次函数只有时,在对称轴的右侧,随的增大而减小,选项正确故选.【点睛】考查正比例函数、反比例函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.二、填空题(每小题3分,共24分)11、2【分析】把x=1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【详解】∵方程x2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【点睛】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用.12、【解析】试题分析:列表得:
黑1
黑2
白1
白2
黑1
黑1黑1
黑1黑2
黑1白1
黑1白2
黑2
黑2黑1
黑2黑2
黑2白1
黑2白2
白1
白1黑1
白1黑2
白1白1
白1白2
白2
白2黑1
白2黑2
白2白1
白2白2
共有16种等可能结果总数,其中两次摸出是白球有4种.∴P(两次摸出是白球)=.考点:概率.13、1【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,底面最多有个,第二层最多有个,第三层最多有个则n的最大值是故答案为:1.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.14、5【分析】由垂径定理可知,在中利用勾股定理即可求出半径.【详解】设⊙的半径为r∵是⊙的一条弦,⊥,∴在中∵∴∴故答案为5【点睛】本题主要考查勾股定理及垂径定理,掌握勾股定理及垂径定理的内容是解题的关键.15、4【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=6,OB=OD,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案为:4.【点睛】此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.16、【解析】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD==.故答案为.17、或【分析】根据函数图象向上平移加,向右平移减,可得函数解析式.【详解】解:将y=x1-1x+3化为顶点式,得:y=(x-1)1+1.将抛物线y=x1-1x+3向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为:y=(x-1-3)1+1+1;即y=(x-4)1+3或.故答案为:或.【点睛】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.18、【解析】试题分析:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D=考点:旋转的性质.三、解答题(共66分)19、,【分析】根据配方法解一元二次方程的步骤,解方程即可.【详解】解:移项得x2﹣6x=7,配方得x2﹣6x+9=7+9,即,∴-3=±4,∴,.【点睛】本题考查了配方法解一元二次方程,正确配方是解题的关键:“当二次项系数为1时,方程两边同时加一次项系数一半的平方”.20、(1)画图见解析;(2)画图见解析,1.【分析】(1)根据AB的长以及△ABE的面积可得出AB边上的高为2,再直接利用正切的定义借助网格得出E点位置,再画出△ABE即可;
(2)在网格中根据勾股定理可得出DC2=22+42,利用网格找出使CF2=DC2=22+42的点F即可,然后利用网格通过转化法可求出△CDF的面积.【详解】解:(1)设△ABE中AB边上的高为EG,则S△ABE=×AB×EG=4,又AB=4,∴EG=2,假设∠A的正切值为,即tanA=,∴AG=1,∴点E的位置如图所示,△ABE即为所求:
(2)根据勾股定理可得,DC2=22+42,∴CF2=DC2=22+42,所以点F的位置如图所示,△DCF即为所求;
根据网格可得,△DCF的面积=4×4-×2×4-×2×4-×2×2=1.【点睛】此题主要考查了应用设计与作图,正确借助网格分析是解题关键.21、(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)在飞行过程中,小球从飞出到落地所用时间是4s;(3)在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【解析】分析:(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.详解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.点睛:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.22、(1)每千克40元(2)猪肉的售价应该下降5元【分析】(1)设今年年初猪肉的价格为每千克x元,根据今年10月的猪肉价格=今年年初猪肉的价格×(1+上涨率),即可得出关于x的一元一次方程,解之即可得出结论;
(2)设猪肉的售价应该下降y元,则每日可售出(100+10y)千克,根据总利润=每千克的利润×销售数量,即可得出关于y的一元二次方程,解之取其较大值即可得出结论.【详解】解:(1)设今年年初猪肉的价格为每千克元,依题意,得,解得.答:今年年初猪肉的价格为每千克40元.(2)设猪肉的售价应该下降元,则每日可售出千克,依题意,得,整理,得,解得.∵让顾客得到实惠,∴.答:猪肉的售价应该下降5元.【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程.23、(1);(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x≤56【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用w=销量乘以每件利润进而得出关系式求出答案;(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.【详解】解:(1)y与x之间的函数关系式为:把(35,350),(55,150)代入得:由题意得:解得:∴y与x之间的函数关系式为:.(2)设销售利润为W元则W=(x﹣30)•y=(x﹣30)(﹣10x+700),W=﹣10x2+1000x﹣21000W=﹣10(x﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.(3)令W=3640∴﹣10(x﹣50)2+4000=3640∴x1=44,x2=56如图所示,由图象得:当44≤x≤56时,每天利润不低于3640元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.24、(1)详见解析;(2).【分析】(1)方法1、先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;
方法2、判断出OP是CD的垂直平分线,即可得出结论;
(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【详解】解:(1)方法1、连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP(HL),∴∠DOP=∠COP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年04月中国农业发展银行广东省分行纪委办调查专业人才社会招考笔试历年参考题库附带答案详解
- 2025年度常州消防设施检测与鉴定合同4篇
- 2024版水泥混凝土运输合同书
- 2025年度城市基础设施配套拆迁施工合同4篇
- 专业菊花供应商2024年销售协议版B版
- 《流行病症:新型冠状病毒肺炎》课件
- 二零二五年度玻璃原材料期货交易合同6篇
- 2024年03月广东中信银行深圳分行社会招考笔试历年参考题库附带答案详解
- 二零二五版存量房市场政策研究合同3篇
- 2024简易散伙协议规范格式
- 四川省高职单招电气技术类《电子基础》历年考试真题试题库(含答案)
- 窦性心动过速的危害
- 深基坑工程基坑土方开挖及支护降水施工方案
- 2024年江西生物科技职业学院单招职业技能测试题库带解析答案
- 医药制造企业资本结构优化研究以贵州百灵为例
- GB 31335-2024铁矿开采和选矿单位产品能源消耗限额
- 医院高风险意外事件应急措施和救护机制
- 桥本甲状腺炎-90天治疗方案
- 【复合附件版】个人借车免责协议书简单
- 焊接工装夹具设计手册
- 医院开展急救知识培训计划方案
评论
0/150
提交评论