版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知则()A. B. C. D.2.已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为()A.(1,2) B.(2,9) C.(5,3) D.(–9,–4)3.如图,在△ABC中,AB=18,BC=15,cosB=,DE∥AB,EF⊥AB,若=,则BE长为()A.7.5 B.9 C.10 D.54.如图,圆锥底面半径为rcm,母线长为5cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A.3 B.4 C.5 D.65.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温(℃)与时间(时)之间的关系如图所示.若y(℃)表示0时到t时内骆驼体温的温差(即0时到t时最高温度与最低温度的差).则y与t之间的函数关系用图象表示,大致正确的是()A. B. C. D.6.在平面直角坐标系中,将横纵坐标之积为1的点称为“好点”,则函数的图象上的“好点”共有()A.1个 B.2个 C.3个 D.4个7.若,设,,,则、、的大小顺序为()A. B. C. D.8.下列事件中,是必然事件的是()A.购买一张彩票,中奖 B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是180°9.如图,是的直径,,是上的两点,且平分,分别与,相交于点,,则下列结论不一定成立的是()A. B. C. D.10.一个不透明的盒子有n个除颜色外其它完全相同的小球,其中有12个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.30 C.40 D.50二、填空题(每小题3分,共24分)11.已知一个不透明的盒子中装有3个红球,2个白球,这些球除颜色外均相同,现从盒中任意摸出1个球,则摸到红球的概率是________
.12.如图,Rt△ABC中,∠ACB=90°,AC=BC=,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________(结果保留π).13.如图一次函数的图象分别交x轴、y轴于A、B,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数的图象于Q,,则Q点的坐标为_____________14.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB的长为x米,则菜园的面积y(平方米)与x(米)的函数表达式为________.(不要求写出自变量x的取值范围)15.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.16.如图,点为等边三角形的外心,连接.①___________.②弧以为圆心,为半径,则图中阴影部分的面积等于__________.17.如图,∠MON=90°,直角三角形ABC斜边的端点A,B别在射线OM,ON上滑动,BC=1,∠BAC=30°,连接OC.当AB平分OC时,OC的长为______.18.把一副普通扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的牌上的数字是3的倍数的概率为______.三、解答题(共66分)19.(10分)有1张看上去无差别的卡片,上面分别写着1、2、1.随机抽取1张后,放回并混在一起,再随机抽取1张.(I)请你用画树状图法(或列表法)列出两次抽取卡片出现的所有可能结果;(Ⅱ)求两次抽取的卡片上数字之和为偶数的概率.20.(6分)对于实数a,b,我们可以用min{a,b}表示a,b两数中较小的数,例如min{3,﹣1}=﹣1,min{1,1}=1.类似地,若函数y1、y1都是x的函数,则y=min{y1,y1}表示函数y1和y1的“取小函数”.(1)设y1=x,y1=,则函数y=min{x,}的图象应该是中的实线部分.(1)请在图1中用粗实线描出函数y=min{(x﹣1)1,(x+1)1}的图象,并写出该图象的三条不同性质:①;②;③;(3)函数y=min{(x﹣4)1,(x+1)1}的图象关于对称.21.(6分)已知x=1是一元二次方程(a﹣2)x2+(a2﹣3)x﹣a+1=0的一个根,求a的值.22.(8分)已知抛物线y=x2﹣2和x轴交于A,B(点A在点B右边)两点,和y轴交于点C,P为抛物线上的动点.(1)求出A,C的坐标;(2)求动点P到原点O的距离的最小值,并求此时点P的坐标;(3)当点P在x轴下方的抛物线上运动时,过P的直线交x轴于E,若△POE和△POC全等,求此时点P的坐标.23.(8分)某商场将进货单价为30元的商品以每个40元的价格售出时,平均每月能售出600个,调查表明:这种商品的售价每上涨1元,其销售量就减少10个.(1)为了使平均每月有10000元的销售利润且尽快售出,这种商品的售价应定为每个多少元?(2)当该商品的售价为每个多少元时,商场销售该商品的平均月利润最大?最大利润是多少?24.(8分)已知等边△ABC的边长为2,(1)如图1,在边BC上有一个动点P,在边AC上有一个动点D,满足∠APD=60°,求证:△ABP~△PCD(2)如图2,若点P在射线BC上运动,点D在直线AC上,满足∠APD=120°,当PC=1时,求AD的长(3)在(2)的条件下,将点D绕点C逆时针旋转120°到点D',如图3,求△D′AP的面积.25.(10分)如图,矩形的两边的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值;(2)若,求反比例函数的表达式.26.(10分)如图,在平面直角坐标系中,已知抛物线经过原点,顶点为,且与直线相交于两点.(1)求抛物线的解析式;(2)求、两点的坐标;(3)若点为轴上的一个动点,过点作轴与抛物线交于点,则是否存在以为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【解析】根据特殊角的三角函数值求解即可.【详解】∵,∴,故选:A.【点睛】本题考查了特殊角的三角函数值,比较简单,熟记特殊角的三角函数值是解题的关键.2、A【解析】∵线段CD是由线段AB平移得到的,而点A(−1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3,则点B(−4,−1)的对应点D的坐标为(1,2).故选A3、C【分析】先设DE=x,然后根据已知条件分别用x表示AF、BF、BE的长,由DE∥AB可知,进而可求出x的值和BE的长.【详解】解:设DE=x,则AF=2x,BF=18﹣2x,∵EF⊥AB,∴∠EFB=90°,∵cosB==,∴BE=(18﹣2x),∵DE∥AB,∴,∴∴x=6,∴BE=(18﹣12)=10,故选:C.【点睛】本题主要考查了三角形的综合应用,根据平行线得到相关线段比例是解题关键.4、A【分析】直接根据弧长公式即可得出结论.【详解】∵圆锥底面半径为rcm,母线长为5cm,其侧面展开图是圆心角为216°的扇形,∴2πr=×2π×5,解得r=1.故选A.【点睛】本题考查的是圆锥的相关计算,熟记弧长公式是解答此题的关键.5、A【分析】选取4时和8时的温度,求解温度差,用排除法可得出选项.【详解】由图形可知,骆驼0时温度为:37摄氏度,4时温度为:35℃,8时温度为:37℃∴当t=4时,y=37-35=2当t=8时,y=37-35=2即在t、y的函数图像中,t=4对应的y为2,t=8对应的y为2满足条件的只有A选项故选:A【点睛】本题考查函数的图像,解题关键是根据函数的意义,确定函数图像关键点处的数值.6、C【分析】分x≥0及x<0两种情况,利用“好点”的定义可得出关于x的一元二次方程,解之即可得出结论.【详解】当x≥0时,,即:,
解得:,(不合题意,舍去),当x<0时,,即:,
解得:,,∴函数的图象上的“好点”共有3个.
故选:C.【点睛】本题考查了一次函数图象上点的坐标特征及解一元二次方程,分x≥0及x<0两种情况,找出关于x的一元二次方程是解题的关键.7、B【分析】根据,设x=1a,y=7a,z=5a,进而代入A,B,C分别求出即可.【详解】解:∵,设x=1a,y=7a,z=5a,
∴=,
==1,
==1.
∴A<B<C.
故选:B.【点睛】本题考查了比例的性质,根据比例式用同一个未知数得出x,y,z的值进而求出是解题的关键.8、D【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.9、C【分析】由圆周角定理和角平分线得出,,由等腰三角形的性质得出,得出,证出,选项A成立;由平行线的性质得出,选项B成立;由垂径定理得出,选项D成立;和中,没有相等的边,与不全等,选项C不成立,即可得出答案.【详解】∵是的直径,平分,∴,,∴,∵,∴,∴,∴,选项A成立;∴,选项B成立;∴,选项D成立;∵和中,没有相等的边,∴与不全等,选项C不成立,故选C.【点睛】本题考查了圆周角定理,垂径定理,等腰三角形的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌圆周角定理和垂径定理.10、C【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值即可.【详解】根据题意得:,解得n=40,所以估计盒子中小球的个数为40个.故选C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,概率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.二、填空题(每小题3分,共24分)11、【分析】先求出这个口袋里一共有球的个数,然后用红球的个数除以球的总个数即可.【详解】因为共有5个球,其中红球由3个,所以从中任意摸出一个球是红球的概率是,故答案为.【点睛】本题考查了概率公式,掌握概率=所求情况数与总情况数之比是解题的关键.12、【分析】过点C作CD⊥AB于点D,在Rt△ABC中,求出AB长,继而求得CD长,继而根据扇形面积公式进行求解即可.【详解】过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴AB=AC=4,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2××4π×=.故答案为.【点睛】本题考查了圆锥的计算,正确求出旋转后圆锥的底面圆半径是解题的关键.13、(2,)【解析】因为三角形OQC的面积是Q点的横纵坐标乘积的一半,所以可求出k的值,PC为中位线,可求出C的横坐标,也是Q的横坐标,代入反比例函数可求出纵坐标【详解】解:设A点的坐标为(a,0),B点坐标为(0,b),
分别代入,解方程得a=4,b=-2,
∴A(4,0),B(0,-2)∵PC是△AOB的中位线,
∴PC⊥x轴,即QC⊥OC,
又Q在反比例函数的图象上,
∴2S△OQC=k,
∴k=2×=3,
∵PC是△AOB的中位线,
∴C(2,0),
可设Q(2,q)∵Q在反比例函数的图象上,
∴q=,
∴点Q的坐标为(2
,
).点睛:本题考查反比例函数的综合运用,关键是知道函数上面取点后所得的三角函数的面积和点的坐标之间的关系.14、y=-x2+15x【分析】由AB边长为x米,根据已知可以推出BC=(30-x),然后根据矩形的面积公式即可求出函数关系式.【详解】∵AB边长为x米,而菜园ABCD是矩形菜园,∴BC=(30-x),菜园的面积=AB×BC=(30-x)•x,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为:y=-x2+15x,故答案为y=-x2+15x.【点睛】本题考查了二次函数的应用,正确分析,找准各量间的数量关系列出函数关系式是解题的关键.15、3.【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF==3,∴最短路线长为3.故答案为:3.【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.16、120【分析】①连接OC利用等边三角形的性质可得出,可得出的度数②阴影部分的面积即求扇形AOC的面积,利用面积公式求解即可.【详解】解:①连接OC,∵O为三角形的外心,∴OA=OB=OC∴∴∴.②∵∴∴阴影部分的面积即求扇形AOC的面积∵∴阴影部分的面积为:.【点睛】本题考查的知识点有等边三角形外心的性质,全等三角形的判定及其性质以及扇形的面积公式,利用三角形外心的性质得出OA=OB=OC是解题的关键.17、.【分析】取AB中点F,连接FC、FO,根据斜边上的中线等于斜边的一半及等腰三角形三线合一的性质得到AB垂直平分OC,利用特殊角的三角函数即可求得答案.【详解】如图,设AB交OC于E,取AB中点F,连接FC、FO,∵∠MON=∠ACB=90°∴FC=FO(斜边上的中线等于斜边的一半),又AB平分OC,∴CE=EO,ABOC(三线合一)在中,BC=1,∠ABC=90,∴,∴∴故答案为:【点睛】本题考查了直角三角形的性质,斜边上的中线等于斜边的一半,等腰三角形的性质,综合性较强,但难度不大,构造合适的辅助线是解题的关键.18、【分析】根据概率的定义求解即可【详解】一副普通扑克牌中的13张红桃牌,牌上的数字是3的倍数有4张∴概率为故本题答案为:【点睛】本题考查了随机事件的概率三、解答题(共66分)19、(I)9;(Ⅱ).【解析】(Ⅰ)直接用树状图或列表法等方法列出各种可能出现的结果;(Ⅱ)由(Ⅰ)可知所有9种等可能的结果数,再找出两次抽到的卡片上的数字之和为偶数的有5种.然后根据概率公式求解即可.【详解】解:(Ⅰ)画树状图得:共有9种等可能的结果数;(Ⅱ)由(Ⅰ)可知:共有9种等可能的结果数,两次抽取的卡片上数字之和为偶数的有5种,所以两次抽到的卡片上的数字之和为偶数的概率为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20、(2)B,(2)对称轴为y轴;x<﹣2时y随x的增大而减小;最小值为3;(3)x=2.【分析】(2)依据函数解析式,可得当x≤-2时,x≤;当-2<x<3时,x>;当3<x<2时,x≤;当x≥2时,x>;进而得到函数y=min{x,}的图象;(2)依据函数y=(x-2)2和y=(x+2)2的图象与性质,即可得到函数y=min{(x-2)2,(x+2)2}的图象及其性质;(3)令(x-4)2=(x+2)2,则x=2,进而得到函数y=min{(x-4)2,(x+2)2}的图象的对称轴.【详解】(2)当x≤﹣2时,x≤;当﹣2<x<3时,x>;当3<x<2时,x≤;当x≥2时,x>;∴函数y=min{x,}的图象应该是故选B;(2)函数y=min{(x﹣2)2,(x+2)2}的图象如图中粗实线所示:性质为:对称轴为y轴;x<﹣2时y随x的增大而减小;最小值为3.故答案为对称轴为y轴;x<﹣2时y随x的增大而减小;最小值为3;(3)令(x﹣4)2=(x+2)2,则x=2,故函数y=min{(x﹣4)2,(x+2)2}的图象的对称轴为:直线x=2.故答案为直线x=2.【点睛】本题主要考查的是反比例函数以及二次函数图象与性质的综合应用,本题通过列表、描点、连线画出函数的图象,然后找出其中的规律,通过画图发现函数图象的特点是解题的关键.21、a=﹣2【分析】根据一元二次方程的解的定义将x=1代入方程即可求出答案.【详解】解:将x=1代入(a﹣2)x2+(a2﹣3)x﹣a+1=0,得(a﹣2)+(a2﹣3)﹣a+1=0,∴a2﹣4=0,∴a=±2,由于a﹣2≠0,故a=﹣2.【点睛】本题考查一元二次方程的解,解题的关键是熟练运用一元二次方程的解的定义,本题属于基础题型.22、(1)A(﹣,0),点C的坐标为(0,﹣2);(2)最小值为,点P的坐标为(,﹣)或(﹣,﹣);(3)P(﹣1,﹣1)或(1,1).【分析】(1)令y=0,解方程求出x的值,即可得到点A、B的坐标,令x=0求出y的值,即可得到点C的坐标;(2)根据二次函数图象上点的坐标特征设点P的坐标为(x,x2﹣2),利用勾股定理列式求出OP2,再根据二次函数的最值问题解答;(3)根据二次函数的增减性,点P在第三四象限时,OP≠1,从而判断出OC与OE是对应边,然后确定出点E与点A或点B重合,再根据全等三角形对应角相等可得∠POC=∠POE,然后根据第三、四象限角平分线上的点到角的两边距离相等的坐标特征利用抛物线解析式求解即可.【详解】解:(1)令y=0,则x2﹣2=0,解得x=±,∵点A在点B右边,∴A(,0),令x=0,则y=﹣2,∴点C的坐标为(0,﹣2);(2)∵P为抛物线y=x2﹣2上的动点,∴设点P的坐标为(x,x2﹣2),则OP2=x2+(x2﹣2)2=x4﹣3x2+4=(x2﹣)2+,∴当x2=,即x=±时,OP2最小,OP的值也最小,最小值为,此时,点P的坐标为(,﹣)或(﹣,﹣);(3)∵OP2=(x2﹣)2+,∴点P在第三四象限时,OP≠1,∵△POE和△POC全等,∴OC与OE是对应边,∴∠POC=∠POE,∴点P在第三、四象限角平分线上,①点P在第三象限角平分线上时,y=x,∴x2﹣2=x,解得x1=﹣1,x2=2(舍去),此时,点P(﹣1,﹣1);②点P在第四象限角平分线上时,y=﹣x,∴x2﹣2=﹣x,解得x1=1,x2=﹣2(舍去),此时,点P(1,1),综上所述,P(﹣1,﹣1)或(1,1)时△POE和△POC全等.【点睛】本题是二次函数综合题型,主要利用了抛物线与坐标轴的交点的求解、二次函数的最值问题、全等三角形的性质、难点在于判断出(3)点P在第三、四象限角平分线上.23、(1)50元;(2)该商品的售价为每个65元时,商场销售该商品的平均月利润最大,最大利润是12250元.【分析】(1)设该商品的售价是每个元,根据利润=每个的利润×销售量,即可列出关于x的方程,解方程即可求出结果;(2)设该商品的售价为每个元,利润为y元,根据利润=每个的利润×销售量即可得出y关于x的函数关系式,然后利用二次函数的性质解答即可.【详解】解:(1)设该商品的售价是每个元,根据题意,得:,解之得:,(不合题意,舍去).答:为了尽快售出,这种商品的售价应定为每个50元;(2)设该商品的售价为每个元,利润为y元,则,∴当时,利润最大,最大利润是12250元.答:该商品的售价为每个65元时,商场销售该商品的平均月利润最大,最大利润是12250元.【点睛】本题是一元二次方程和二次函数的应用题,属于常考题型,熟练掌握一元二次方程的解法和二次函数的性质是解题关键.24、(1)见解析;(2);(3)【分析】(1)先利用三角形的内角和得出∠BAP+∠APB=120°,再用平角得出∠APB+∠CPD=120°,进而得出∠BAP=∠CPD,即可得出结论;(2)先构造出含30°角的直角三角形,求出PE,再用勾股定理求出PE,进而求出AP,再判断出△ACP∽∠APD,得出比例式即可得出结论;(3)先求出CD,进而得出CD',再构造出直角三角形求出D'H,进而得出D'G,再求出AM,最后用面积差即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,在△ABP中,∠B+∠APB+∠BAP=180°,∴∠BAP+∠APB=120°,∵∠APB+∠CPD=180°﹣∠APD=120°,∴∠BAP=∠CPD,∴△ABP∽△PCD;(2)如图2,过点P作PE⊥AC于E,∴∠AEP=90°,∵△ABC是等边三角形,∴AC=2,∠ACB=60°,∴∠PCE=60°,在Rt△CPE中,CP=1,∠CPE=90°﹣∠PCE=30°,∴CE=CP=,根据勾股定理得,PE=,在Rt△APE中,AE=AC+CE=2+=,根据勾股定理得,AP2=AE2+PE2=7,∵∠ACB=60°,∴∠ACP=120°=∠APD,∵∠CAP=∠PAD,∴△ACP∽△APD,∴,∴AD==;(3)如图3,由(2)知,AD=,∵AC=2,∴CD=AD﹣AC=,由旋转知,∠DCD'=120°,CD'=CD=,∵∠DCP=60°,∴∠ACD'=∠DCP=60°,过点D'作D'H⊥CP于H,在Rt△CHD'中,CH=CD'=,根据勾股定理得,D'H=CH=,过点D'作D'G⊥AC于G,∵∠ACD'=∠PCD',∴D'G=D'H=(角平分线定理),∴S四边形ACPD'=S△ACD'+S△PCD'=AC•D'G+CP•DH'=×2×+×1×=,过点A作AM⊥BC于M,∵AB=AC,∴BM=BC=1,在Rt△ABM中,根据勾股定理得,AM=BM=,∴S△ACP=CP•AM=×1×=,∴S△D'AP=S四边形ACPD'﹣S△ACP=﹣=.【点睛】此题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网球拍球童拍行业销售工作总结
- 金属矿产行业技术工作总结
- 《澳门国际机场》课件
- 药店卫生消毒标准
- 采矿行业人事工作总结
- 翻译行业服务员工作总结
- 《列车环境与卫生》课件
- 2023年河北省唐山市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2021年山东省东营市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年湖北省武汉市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 停车场管理系统说明书
- 医院药剂科年终总结
- (2024年)AED(自动体外除颤器)使用指南
- 麻醉药品精神药品管理
- 抽错血标本护理不良事件
- 科技成果转化培训资料
- 社会稳定风险评估 投标方案(技术标)
- 生产线能耗分析报告模板
- 上海市松江区2023-2024学年高一上学期期末质量监控数学试卷 (解析版)
- 校外安全教育课件
- GB/T 43474-2023江河生态安全评估技术指南
评论
0/150
提交评论