2025届北京市门头沟区名校九上数学期末调研模拟试题含解析_第1页
2025届北京市门头沟区名校九上数学期末调研模拟试题含解析_第2页
2025届北京市门头沟区名校九上数学期末调研模拟试题含解析_第3页
2025届北京市门头沟区名校九上数学期末调研模拟试题含解析_第4页
2025届北京市门头沟区名校九上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市门头沟区名校九上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知(a≠0,b≠0),下列变形错误的是()A. B.2a=3b C. D.3a=2b2.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=,∠C=45°,tan∠ABC=3,则BD等于()A.2 B.3 C. D.3.老师设计了接力游戏,用合作的方式完成“求抛物线的顶点坐标”,规则如下:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成解答.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有丁 B.乙和丁 C.乙和丙 D.甲和丁4.已知抛物线在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A. B. C. D.5.点A(﹣5,4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.抛物线y=x2+2x﹣3的最小值是()A.3B.﹣3C.4D.﹣47.数据1,3,3,4,5的众数和中位数分别为()A.3和3 B.3和3.5 C.4和4 D.5和3.58.点P(﹣2,4)关于坐标原点对称的点的坐标为()A.(4,﹣2) B.(﹣4,2) C.(2,4) D.(2,﹣4)9.若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2cm B.3cm C.4cm D.6cm10.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.11.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A. B. C. D.12.已知,则下列各式不成立的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图所示平面直角坐标系中,点A,C分别在x轴和y轴上,点B在第一象限,BC=BA,∠ABC=90°,反比例函数y=.(x>0)的图象经过点B,若OB=2,则k的值为_____.14.如图,矩形中,,点在边上,且,的延长线与的延长线相交于点,若,则______.15.将二次函数化成的形式为__________.16.函数是关于反比例函数,则它的图象不经过______的象限.17.如图已知二次函数y1=x2+c与一次函数y2=x+c的图象如图所示,则当y1<y2时x的取值范围_____.18.(2011•南充)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=_________度.三、解答题(共78分)19.(8分)随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了多少名学生?在扇形统计图中,表示""的扇形圆心角的度数是多少;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生大约有多少名?(4)某天甲、乙两名同学都想从“微信"、""、“电话"三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.20.(8分)某市计划建设一项水利工程,工程需要运送的土石方总量为米3,某运输公司承办了这项工程运送土石方的任务.(1)完成运送任务所需的时间(单位:天)与运输公司平均每天的工作量(单位:米3/天)之间具有怎样的函数关系?(2)已知这个运输公司现有50辆卡车,每天最多可运送土石方米3,则该公司完成全部运输任务最快需要多长时间?(3)运输公司连续工作30天后,天气预报说两周后会有大暴雨,公司决定10日内把剩余的土石方运完,平均每天至少增加多少辆卡车?21.(8分)如图,在A港口的正东方向有一港口B.某巡逻艇从A港口沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶2小时到达港口B.求A,B两港之间的距离(结果保留根号).22.(10分)如图,已知抛物线C1交直线y=3于点A(﹣4,3),B(﹣1,3),交y轴于点C(0,6).(1)求C1的解析式.(2)求抛物线C1关于直线y=3的对称抛物线的解析式;设C2交x轴于点D和点E(点D在点E的左边),求点D和点E的坐标.(3)将抛物线C1水平向右平移得到抛物线C3,记平移后点B的对应点B′,若DB平分∠BDE,求抛物线C3的解析式.(4)直接写出抛物线C1关于直线y=n(n为常数)对称的抛物线的解析式.23.(10分)如图,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在正方形网格的格点上.(1)画出位似中心O;(2)△ABC与△A′B′C′的相似比为__________,面积比为__________.24.(10分)一次函数的图像与x轴相交于点A,与y轴相交于点B,二次函数图像经过点A、B,与x轴相交于另一点C.(1)求a、b的值;(2)在直角坐标系中画出该二次函数的图像;(3)求∠ABC的度数.25.(12分)(2016山东省聊城市)如图,在直角坐标系中,直线与反比例函数的图象交于关于原点对称的A,B两点,已知A点的纵坐标是1.(1)求反比例函数的表达式;(2)将直线向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.26.甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)a=_____;b=_____;c=_____;(2)填空:(填“甲”或“乙”).①从平均数和中位数的角度来比较,成绩较好的是_____;②从平均数和众数的角度来比较,成绩较好的是_____;​③成绩相对较稳定的是_____.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.2、A【解析】根据三角函数定义可得AD=AC•sin45°,从而可得AD的长,再利用正切定义可得BD的长.【详解】∵AC=6,∠C=45°∴AD=AC⋅sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故选A.【点睛】本题主要考查解直角三角形,三角函数的知识,熟记知识点是解题的关键.3、D【分析】观察每一项的变化,发现甲将老师给的式子中等式右边缩小两倍,到了丁处根据丙的式子得出了错误的顶点坐标.【详解】解:,可得顶点坐标为(-1,-6),根据题中过程可知从甲开始出错,按照此步骤下去到了丁处可得顶点应为(1,-3),所以错误的只有甲和丁.故选D.【点睛】本题考查了求二次函数的顶点坐标和配方法,解题的关键是掌握配方法化顶点式的方法.4、D【解析】试题分析:由抛物线开口向上可知a>0,故A错误;由对称轴在轴右侧,可知a、b异号,所以b<0,故B错误;由图象知当x=1时,函数值y小于0,即a+b+c<0,故C错误;由图象知当x=-2时,函数值y大于0,即4a-2b+c>0,故D正确;故选D考点:二次函数中和符号5、B【分析】根据象限内点的坐标特点即可解答.【详解】点A(﹣5,4)所在的象限是第二象限,故选:B.【点睛】此题考查象限内点的坐标,熟记每个象限及坐标轴上点的坐标特点是解题的关键.6、D【解析】把y=x2+2x﹣3配方变成顶点式,求出顶点坐标即可得抛物线的最小值.【详解】∵y=x2+2x﹣3=(x+1)2﹣1,∴顶点坐标为(﹣1,﹣1),∵a=1>0,∴开口向上,有最低点,有最小值为﹣1.故选:D.【点睛】本题考查二次函数最值的求法:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,熟练掌握并灵活运用适当方法是解题关键.7、A【分析】根据众数和中位数的定义:一般来说,一组数据中,出现次数最多的数就叫这组数据的众数;把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;即可得解.【详解】由已知,得该组数据中,众数为3,中位数为3,故答案为A.【点睛】此题主要考查对众数、中位数概念的理解,熟练掌握,即可解题.8、D【解析】根据关于原点对称,则两点的横、纵坐标都是互为相反数,可得答案.【详解】点P(﹣2,4)关于坐标原点对称的点的坐标为(2,﹣4),故选D.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称,则两点的横、纵坐标都是互为相反数.9、D【解析】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm),∴圆锥的底面半径为12π÷2π=6(cm),故选D.10、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B符合条件.故选B.11、B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=BD.cos∠ACB=,故选B.12、D【分析】利用比例的性质进行逐一变形,比较是否与题目一致,即可得出答案.【详解】A:因为所以ab=cd,故A正确;B:因为所以ab=cd,故B正确;C:因为所以(a+c)b=(d+b)c,化简得ab=cd,故选项C正确;D:因为所以(a+1)(b+1)=(d+1)(c+1),化简得ab+a+b=cd+d+c,故选项D错误;故答案选择D.【点睛】本题考查的是比例的性质,难度不大,需要熟练掌握相关基础知识,重点需要熟练掌握去括号法则.二、填空题(每题4分,共24分)13、1【分析】作BD⊥x轴于D,BE⊥y轴于E,则四边形ODBE是矩形,利用AAS证得△ABD≌△CBE,即可证得BD=BE,然后根据勾股定理求得B的坐标,代入y=.(x>0)即可求得k的值.【详解】如图,作BD⊥x轴于D,BE⊥y轴于E,∴四边形ODBE是矩形,∴∠DBE=90°,∵∠ABC=90°,∴∠ABD=∠CBE,在△ABD和△CBE中∴△ABD≌△CBE(AAS),∴BE=BD,∴四边形ODBE是正方形,∵OB=2,根据勾股定理求得OD=BD=2,∴B(2,2),∵反比例函数y=(x>0)的图象经过点B,∴k=2×2=1,故答案为1.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形全等的判定和性质,求得B的坐标是解题的关键.14、【分析】设BC=EC=a,根据相似三角形得到,求出a的值,再利用tanA即可求解.【详解】设BC=EC=a,∵AB∥CD,∴△ABF∽△ECF,∴,即解得a=(-舍去)∴tanF==故答案为:.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义.15、【分析】利用配方法整理即可得解.【详解】解:,所以.故答案为.【点睛】本题考查了二次函数的解析式有三种形式:(1)一般式:为常数);(2)顶点式:;(3)交点式(与轴):.16、第一、三象限【解析】试题解析:函数是关于的反比例函数,解得:比例系数它的图象在第二、四象限,不经过第一、三象限.故答案为第一、三象限.17、0<x<1.【解析】首先将两函数解析式联立得出其交点横坐标,进而得出当y1<y2时x的取值范围.【详解】解:由题意可得:x2+c=x+c,解得:x1=0,x2=1,则当y1<y2时x的取值范围:0<x<1.故答案为0<x<1.【点睛】此题主要考查了二次函数与一次函数,正确得出两函数的交点横坐标是解题关键.18、50【解析】∵PA,PB是⊙O是切线,A,B为切点,∴PA=PB,∠OBP=90°,∵OA=OB,∴∠OBA=∠BAC=25°,∴∠ABP=90°﹣25°=65°,∵PA=PB,∴∠BAP=∠ABP=65°,∴∠P=180°﹣65°﹣65°=50°,故答案为:50°.三、解答题(共78分)19、(1)100;108°;(2)详见解析;(3)600人;(4)【分析】(1)利用喜欢“电话”沟通的人数除以其所占调查总人数的百分率即可求出调查总人数,然后求出喜欢“QQ”沟通的人数占调查总人数的百分率,再乘360°即可求出结论;(2)用调查总人数×喜欢“短信”沟通的人数所占百分率即可求出喜欢“短信”沟通的人数,然后用调查总人数减去其余“电话”、“短信”、“QQ”和“其它”沟通的人数即可求出喜欢用“微信”沟通的人数,最后补全条形统计图即可;(3)先求出喜欢用“微信”沟通的人数占调查总人数的百分率,再乘1500即可;(4)根据题意,画出树状图,然后根据概率公式计算即可.【详解】解:(1)调查总人数为20÷20%=100人表示""的扇形圆心角的度数是30÷100×360°=108°(2)喜欢用“短信”沟通的人数为:100×5%=5人,喜欢用“微信”沟通的人数为:100-20-5-30-5=40人,补充条形统计图,如图所示:(3)喜欢用“微信”沟通所占百分比为:∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:人.答:该校最喜欢用“微信”进行沟通的学生有600人.(4)列出树状图,如图所示,共有9种等可能的结果,其中两人恰好选中同一种沟通方式共有3种情况,所以甲、乙两名同学恰好选中同一种沟通方式的概率为:【点睛】此题考查的是条形统计图、扇形统计图和求概率问题,结合条形统计图和扇形统计图得出有用信息并掌握画树状图和概率公式求概率是解决此题的关键.20、(1);(2)该公司完成全部运输任务最快需要50天;(3)每天至少增加50辆卡车.【分析】(1)根据“平均每天的工作量×工作时间=工作总量”即可得出结论;(2)根据“工作总量÷平均每天的工作量=工作时间”即可得出结论;(3)先求出30天后剩余的工作量,然后利用剩余10天每天的工作量÷每辆汽车每天的工作量即可求出需要多少辆汽车,从而求出结论.【详解】解:(1)由题意得:,变形,得;(2)当时,,答:该公司完成全部运输任务最快需要50天.(3)辆,辆答:每天至少增加50辆卡车.【点睛】此题考查的是反比例函数的应用,掌握实际问题中的等量关系是解决此题的关键.21、A,B间的距离为(20+20)海里.【分析】过点C作CD⊥AB于点D,根据题意可得,∠ACD=60°,∠BCD=45°,BC=20×2=40,然后根据锐角三角函数即可求出A,B间的距离.【详解】解:如图,过点C作CD⊥AB于点D,根据题意可知:∠ACD=60°,∠BCD=45°,BC=20×2=40,∴在Rt△BCD中,CD=BD=BC=20,在Rt△ACD中,AD=CD•tan60°=20,∴AB=AD+BD=20+20(海里).答:A,B间的距离为(20+20)海里.【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是掌握方向角的定义.22、(1)C1的解析式为y=x2+x+1;(2)抛物线C2的解析式为y=﹣x2﹣x,D(﹣5,0),E(0,0);(3)抛物线C3的解析式为y=;(4)y=x2x+2n﹣1.【分析】(1)设抛物线C1经的解析式为y=ax2+bx+c,将点A、B、C的坐标代入求解即可得到解析式;(2)先求出点C关于直线y=3的对称点的坐标为(0,0),设抛物线C2的解析式为y=a1x2+b1x+c1,即可求出答案;(3)如图,根据平行线的性质及角平分线的性质得到BB′=DB,利用勾股定理求出DB的长度即可得到抛物线平移的距离,由此得到平移后的解析式;(4)设抛物线C1关于直线y=n(n为常数)对称的抛物线的解析式为y=mx+nx+k,根据对称性得到m、n的值,再利用对称性得到新函数与y轴交点坐标得到k的值,由此得到函数解析式.【详解】(1)设抛物线C1经的解析式为y=ax2+bx+c,∵抛物线C1经过点A(﹣4,3),B(﹣1,3),C(0,1).∴,解得,∴C1的解析式为y=x2+x+1;(2)∵C点关于直线y=3的对称点为(0,0),设抛物线C2的解析式为y=a1x2+b1x+c1,∴,解得,∴抛物线C2的解析式为y=﹣x2﹣x;令y=0,则﹣x2﹣x=0,解得x1=0,x2=﹣5,∴D(﹣5,0),E(0,0);(3)如图,∵DB′平分∠BDE,∴∠BDB′=∠ODB′,∵AB∥x轴,∴∠BB′D=∠ODB′,∴∠BDB′=∠BB′D,∴BB′=DB,∵BD==5,∴将抛物线C1水平向右平移5个单位得到抛物线C3,∵C1的解析式为y=x2+x+1=(x+)2+,∴抛物线C3的解析式为y=(x+﹣5)2+=;(4)设抛物线C1关于直线y=n(n为常数)对称的抛物线的解析式为y=mx+nx+k,根据对称性得:新抛物线的开口方向与原抛物线的开口方向相反,开口大小相同,故m=-,对称轴没有变化,故n=-,当n>1时,n+(n-1)=2n-1,故新抛物线与y轴的交点为(0,2n-1),当n<1时,n-(1-n)=2n-1,新抛物线与y轴的交点为(0,2n-1),∴k=2n-1,∴抛物线C1关于直线y=n(n为常数)对称的抛物线的解析式为:y=﹣x2﹣x+2n﹣1.【点睛】此题考查待定系数法求抛物线的解析式,抛物线的对称性,抛物线平移的性质,解题中确定变化后的抛物线的特殊点的坐标是解题的关键.23、(1)作图见解析;(2)2∶1;4∶1.【详解】(1)根据位似的性质,延长AA′、BB′、CC′,则它们的交点即为位似中心O;(2)根据位似的性质得到AB:A′B′=OA:OA′=2:1,则△ABC与△A′B′C′的相似比为2:1,然后根据相似三角形的性质得到它们面积的比.解:(1)如图,点O为位似中心;(2)因为AB:A′B′=OA:OA′=12:6=2:1,所以△ABC与△A′B′C′的相似比为2:1,面积比为4:1.故答案为2:1;4:1.点睛:本题主要考查位似知识.利用位似的性质找出位似中心是解题的关键.24、(1),b=6;(2)见解析;(3)∠ABC=45°【分析】(1)根据已知条件求得点A、点B的坐标,再代入二次函数的解析式,即可求得答案;(2)根据列表、描点、依次连接即可画出该二次函数的图像;(3)作AD⊥BC,利用两点之间的距离公式求得的边长,再运用面积法求高的方法求得AD,最后用特殊角的三角函数值求得答案.【详解】(1)∵一次函数的图像与x轴相交于点A,与y轴相交于点B,∴令,则;令,则;∴点A、点B的坐标分别为:,∵二次函数图像经过点A、B,∴,解得:,∴,b=6;(2)由(1)知二次函数的解析式为:对称轴为直线:,与x轴的交点为.x-2-100.5123y0460.25640二次函数的图像如图:(3)如图,过A作AD⊥BC于D,AB=,CB=,,∵,,∴,解得:,在中,,∵,∴.故∠ABC=45°.【点睛】本题考查了一次函数和二次函数的性质,用待定系数法确定函数的解析式,勾股定理以及面积法求高的应用,解此题的关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论