版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.⊙O的半径为3,点P到圆心O的距离为5,点P与⊙O的位置关系是()A.无法确定 B.点P在⊙O外 C.点P在⊙O上 D.点P在⊙O内2.如图,中,,在同一平面内,将绕点旋转到的位置,使得,则的度数为()A. B. C. D.3.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形4.在平面直角坐标系中,将抛物线向上平移1个单位后所得抛物线的解析式为()A. B. C. D.5.对于二次函数的图象,下列说法正确的是()A.开口向下 B.顶点坐标是C.对称轴是直线 D.与轴有两个交点6.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零7.如图,⊙O是等边△ABC的外接圆,其半径为3,图中阴影部分的面积是()A.π B. C.2π D.3π8.已知反比例函数,下列结论;①图象必经过点;②图象分布在第二,四象限;③在每一个象限内,y随x的增大而增大.其中正确的结论有()个.A.3 B.2 C.1 D.09.数学兴趣小组的同学们想利用树影测量树高.课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,同一时刻测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米.则树高为()A.3.0m B.4.0m C.5.0m D.6.0m10.如图是抛物线y=a(x+1)2+2的一部分,该抛物线在y轴右侧部分与x轴的交点坐标是()A.(,0) B.(1,0) C.(2,0) D.(3,0)二、填空题(每小题3分,共24分)11.如图,已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2),当y随x的增大而增大时,x的取值范围是______.12.分解因式:__________.13.已知函数,当时,函数值y随x的增大而增大.14.如图,在Rt△ABC中,∠C=90°,点D为BC上一点,AD=BD,CD=1,AC=,则∠B的度数为_________________.15.点(5,﹣)关于原点对称的点的坐标为__________.16.已知二次函数的图象经过原点,则的值为_______.17.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的成绩的方差为1.2,乙的成绩的方差为3.9,由此可知_____的成绩更稳定.18.一个口袋中有红球、白球共10个,这些球除色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有60次摸到红球.请你估计这个口袋中有_____个白球.三、解答题(共66分)19.(10分)我区某校组织了一次“诗词大会”,张老师为了选拔本班学生参加,对本班全体学生诗词的掌握情况进行了调查,并将调查结果分为了三类:A:好,B:中,C:差.请根据图中信息,解答下列问题:(1)全班学生共有人;(2)扇形统计图中,B类占的百分比为%,C类占的百分比为%;(3)将上面的条形统计图补充完整;(4)小明被选中参加了比赛.比赛中有一道必答题是:从下表所示的九宫格中选取七个字组成一句诗,其答案为“便引诗情到碧霄”.小明回答该问题时,对第四个字是选“情”还是选“青”,第七个字是选“霄”还是选“宵”,都难以抉择,若分别随机选择,请用列表或画树状图的方法求小明回答正确的概率.情到碧霄诗青引宵便20.(6分)习总书记指出“垃圾分类工作就是新时尚”.某小区为响应垃圾分类处理,改善生态环境,将生活垃圾分成三类:厨余垃圾、可回收垃圾和其他垃圾,分别记为a,b,c,并且设置了相应的垃圾箱:“厨余垃圾”箱、“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C.(1)若小明将一袋分好类的生活垃圾随机投入一类垃圾箱,画树状图求垃圾投放正确的概率;(2)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区某天三类垃圾箱中总共10吨的生活垃圾,数据统计如下(单位:吨):ABCa30.81.2b0.262.440.3c0.320.281.4该小区所在的城市每天大约产生500吨生活垃圾,根据以上信息,试估算该城市生活垃圾中的“厨余垃圾”每月(按30天)有多少吨没有按要求投放.21.(6分)(1)已知:如图1,为等边三角形,点为边上的一动点(点不与、重合),以为边作等边,连接.求证:①,②;(2)如图2,在中,,,点为上的一动点(点不与、重合),以为边作等腰,(顶点、、按逆时针方向排列),连接,类比题(1),请你猜想:①的度数;②线段、、之间的关系,并说明理由;(3)如图3,在(2)的条件下,若点在的延长线上运动,以为边作等腰,(顶点、、按逆时针方向排列),连接.①则题(2)的结论还成立吗?请直接写出,不需论证;②连结,若,,直接写出的长.22.(8分)如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.23.(8分)如图,点D,E分别是不等边△ABC(即AB,BC,AC互不相等)的边AB,AC的中点.点O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)24.(8分)矩形ABCD中,AB=2,AD=3,O为边AD上一点,以O为圆心,OA为半径r作⊙O,过点B作⊙O的切线BF,F为切点.(1)如图1,当⊙O经过点C时,求⊙O截边BC所得弦MC的长度;(2)如图2,切线BF与边AD相交于点E,当FE=FO时,求r的值;(3)如图3,当⊙O与边CD相切时,切线BF与边CD相交于点H,设△BCH、四边形HFOD、四边形FOAB的面积分别为S1、S2、S3,求的值.25.(10分)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=1.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.26.(10分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【详解】解:∵OP=5>3,
∴点P与⊙O的位置关系是点在圆外.
故选:B.【点睛】本题主要考查了点与圆的位置关系,理解并掌握点和圆的位置关系与数量之间的等价关系是解题的关键.2、B【分析】根据,得出∠BAC=∠C′CA,利用旋转前后的图形是全等,所以△ACC′是等腰三角形即可求出∠CC′A,∠CC′A+∠C′AB=180°即可得出旋转角度,最后得出结果.【详解】解:∵∴∠BAC=∠C′CA,∠CC′A+∠C′AB=180°∵∴∠C′CA=70°∵△ABC旋转得到△AB′C′∴AC=AC′∴∠ACC′=∠AC′C=70°∴∠BAC′=180°-70°=110°∴∠CAC′=40°∴∠BAB′=40°故选:B.【点睛】本题主要考查的是旋转的性质,旋转前后的图形是全等的,正确的掌握旋转的性质的解题的关键.3、C【解析】试题分析:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误.B、当AB=AD,CB=CD时,无法得到四边形ABCD是菱形,故此选项错误.C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形.∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确.D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.故选C.4、B【分析】根据抛物线的平移规律:括号里左加右减,括号外上加下减,即可得出结论.【详解】解:将抛物线向上平移1个单位后所得抛物线的解析式为故选B.【点睛】此题考查的是求抛物线平移后的解析式,掌握抛物线的平移规律:括号里左加右减,括号外上加下减,是解决此题的关键.5、B【分析】根据二次函数基本性质逐个分析即可.【详解】A.a=3,开口向上,选项A错误B.顶点坐标是,B是正确的C.对称轴是直线,选项C错误D.与轴有没有交点,选项D错误故选:B【点睛】本题考核知识点:二次函数基本性质:顶点、对称轴、交点.解题关键点:熟记二次函数基本性质.6、D【分析】根据定义进行判断.【详解】解:必然事件就是一定发生的事件,随机事件是可能发生也可能不发生的事件,由必然事件和随机事件的定义可知,选项A,B,C为随机事件,选项D是必然事件,故选D.【点睛】本题考查必然事件和随机事件的定义.7、D【分析】根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.【详解】∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积==3π.故选D.【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.8、A【分析】根据反比例函数的图像与性质解答即可.【详解】①∵-1×1=-1,∴图象必经过点,故①正确;②∵-1<0,图象分布在第二,四象限,故②正确;③∵-1<0,∴在每一个象限内,y随x的增大而增大,故③正确.故选A.【点睛】本题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.9、B【分析】根据同一时刻物高与影长成正比例列式计算即可.【详解】根据同一时刻物高与影长成正比例可得,如图,∴=.∴AD=1.∴AB=AD+DB=1+1=2.故选:B.【点睛】本题考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解,加上DB的长即可.解此题的关键是找到各部分以及与其对应的影长.10、B【解析】根据图表,可得抛物线y=a(x+1)2+2与x轴的交点坐标为(−3,0);将(−3,0)代入y=a(x+1)2+2,可得a(−3+1)2+2=0,解得a=−;所以抛物线的表达式为y=−(x+1)2+2;当y=0时,可得−(x+1)2+2=0,解得x1=1,x2=−3,所以该抛物线在y轴右侧部分与x轴交点的坐标是(1,0).故选B.二、填空题(每小题3分,共24分)11、x>【详解】解:把(﹣1,0),(1,﹣2)代入二次函数y=x2+bx+c中,得:,解得:,那么二次函数的解析式是:,函数的对称轴是:,因而当y随x的增大而增大时,x的取值范围是:.故答案为.【点睛】本题考查待定系数法求二次函数解析式;二次函数的图象性质,利用数形结合思想解题是关键.12、【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点,再利用平方差公式分解因式.a2-9=a2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.13、x≤﹣1.【解析】试题分析:∵=,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y随x的增大而增大,故答案为x≤﹣1.考点:二次函数的性质.14、30°.【分析】根据勾股定理求得AD,再根据三角函数值分析计算.【详解】∵∠C=90°,CD=1,AC=,∴,而AD=BD,∴BD=2,在Rt△ABC中,AC=,BC=BD+CD=3,∴tan∠B=,∴∠B=30°,故填:30°.【点睛】本题考查勾股定理,特殊角的三角函数值,熟练掌握特殊角的三角函数值是关键.15、(-5,)【分析】让两点的横纵坐标均互为相反数可得所求的坐标.【详解】∵两点关于原点对称,∴横坐标为-5,纵坐标为,故点P(5,−)关于原点对称的点的坐标是:(-5,).故答案为:(-5,).【点睛】此题主要考查了关于原点对称的坐标的特点:两点的横坐标互为相反数;纵坐标互为相反数.16、2;【分析】本题中已知了二次函数经过原点(1,1),因此二次函数与y轴交点的纵坐标为1,即m(m-2)=1,由此可求出m的值,要注意二次项系数m不能为1.【详解】根据题意得:m(m−2)=1,∴m=1或m=2,∵二次函数的二次项系数不为零,所以m=2.故填2.【点睛】本题考查二次函数图象上点的坐标特征,需理解二次函数与y轴的交点的纵坐标即为常数项的值.17、甲【分析】根据方差的定义,方差越小数据越稳定.【详解】解:因为S甲2=1.2<S乙2=3.9,方差小的为甲,所以本题中成绩比较稳定的是甲.故答案为甲;【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18、1【分析】从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.【详解】解:由题意可得,红球的概率为60%.则白球的概率为10%,这个口袋中白球的个数:10×10%=1(个),故答案为1.【点睛】本题考查了概率的问题,掌握概率公式、以频率计算频数是解题的关键.三、解答题(共66分)19、(1)40;(2)60,15;(3)补全条形统计图见解析;(4)小明回答正确的概率是.【分析】(1)根据统计图可知,10人占全班人数的,据此求解;(2)根据(1)中所求,容易得C类占的百分比,用1减去两类的百分比即可求得类百分比;(3)根据题意,画出树状图,根据概率公式即可求得.【详解】(1)全班学生总人数为10÷25%=40(人);故答案为:40;(2)B类占的百分比为:×100%=60%;C类占的百分比为1﹣25%﹣60%=15%;故答案为:60,15;(3)C类的人数40×15%=6(人),补全图形如下:(4)根据题意画图如下:由树状图可知共有4种可能结果,其中正确的有1种,所以小明回答正确的概率是.【点睛】本题考查统计图表的中数据的计算,以及树状图的绘制,涉及利用概率公式求随机事件的概率,属综合基础题.20、(1)垃圾投放正确的概率为;(2)该城市生活垃圾中的“厨余垃圾”每月(按30天)没有按要求投放的数量为3000(吨).【分析】(1)列表得出所有等可能的情况数,找出垃圾投放正确的情况数,即可求出所求的概率.(2)用样本中投放不正确的数量除以厨余垃圾的总质量,再乘以每月的厨余垃圾的总吨数即可得.【详解】解:(1)列表如下:abcA(a,A)(b,A)(c,A)B(a,B)(b,B)(c,B)C(a,C)(b,C)(c,C)所有等可能的情况数有9种,其中垃圾投放正确的有(a,A);(b,B);(c,C)3种,∴垃圾投放正确的概率为=;(2)该城市生活垃圾中的“厨余垃圾”每月(按30天)没有按要求投放的数量为500×30××=3000(吨).【点睛】考核知识点:概率.运用列举法求概率是关键.21、(1)①见解析;②∠DCE=110°;(1)∠DCE=90°,BD1+CD1=DE1.证明见解析;(3)①(1)中的结论还成立,②AE=.【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出∠DCE=110°;
(1)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE1+CD1=DE1,即可得到BD1+CD1=DE1;
(3)①运用(1)中的方法得出BD1+CD1=DE1;②根据Rt△BCE中,BE=10,BC=6,求得进而得出CD=8-6=1,在Rt△DCE中,求得最后根据△ADE是等腰直角三角形,即可得出AE的长.【详解】(1)①如图1,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠ACB=∠B=60°,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵△ABD≌△ACE,∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=110°;(1)∠DCE=90°,BD1+CD1=DE1.证明:如图1,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE1+CD1=DE1,∴BD1+CD1=DE1;(3)①(1)中的结论还成立.
理由:如图3,∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE,
在△ABD与△ACE中,∴△ABD≌△ACE(SAS),
∴∠ABC=∠ACE=45°,BD=CE,
∴∠ABC+∠ACB=∠ACE+∠ACB=90°,
∴∠BCE=90°=∠ECD,
∴Rt△DCE中,CE1+CD1=DE1,
∴BD1+CD1=DE1;②∵Rt△BCE中,BE=10,BC=6,∴BD=CE=8,
∴CD=8-6=1,
∴Rt△DCE中,∵△ADE是等腰直角三角形,【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用,解决问题的关键是掌握全等三角形的对应边相等,对应角相等.解题时注意:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.22、(1)35°;(2)证明见解析.【分析】(1)由点E是△ABC的内心,∠BAC=70°,易得∠CAD=,进而得出∠CBD=∠CAD=35°;(2)由点E是△ABC的内心,可得E点为△ABC角平分线的交点,可得∠ABE=∠CBE,∠BAD=∠CAD,可推导出∠DBE=∠BED,可得DE=DB.【详解】(1)∵点E是△ABC的内心,∠BAC=70°,∴∠CAD=,∵,∴∠CBD=∠CAD=35°;(2)∵E是内心,∴∠ABE=∠CBE,∠BAD=∠CAD.∵∠CBD=∠CAD,∴∠CBD=∠BAD,∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,∴∠DBE=∠BED,∴DE=DB.【点睛】此题考查了圆的内心的性质以及角平分线的性质等知识.此题综合性较强,注意数形结合思想的应用.23、(1)见详解;(2)点O的位置满足两个要求:AO=BC,且点O不在射线CD、射线BE上.理由见详解【分析】(1)根据三角形的中位线定理可证得DE∥GF,DE=GF,即可证得结论;(2)根据三角形的中位线定理结合菱形的判定方法分析即可.【详解】(1)∵D、E分别是边AB、AC的中点.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四边形DEFG是平行四边形;(2)点O的位置满足两个要求:AO=BC,且点O不在射线CD、射线BE上.连接AO,由(1)得四边形DEFG是平行四边形,∵点D,G,F分别是AB,OB,OC的中点,∴,,当AO=BC时,GF=DF,∴四边形DGFE是菱形.【点睛】本题主要考查三角形的中位线定理,平行四边形、菱形的判定,平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.24、(1)CM=;(2)r=2﹣2;(3)1.【分析】(1)如图1中,连接OM,OC,作OH⊥BC于H.首先证明CM=2OD,设AO=CO=r,在Rt△CDO中,根据OC2=CD2+OD2,构建方程求出r即可解决问题.(2)证明△OEF,△ABE都是等腰直角三角形,设OA=OF=EF=r,则OE=r,根据AE=2,构建方程即可解决问题.(3)分别求出S1、S2、S3的值即可解决问题.【详解】解:(1)如图1中,连接OM,OC,作OH⊥BC于H.∵OH⊥CM,∴MH=CH,∠OHC=90°,∵四边形ABCD是矩形,∴∠D=∠HCD=90°,∴四边形CDOH是矩形,∴CH=OD,CM=2OD,设AO=CO=r,在Rt△CDO中,∵OC2=CD2+OD2,∴r2=22+(3﹣r)2,∴r=,∴OD=3﹣r=,∴CM=2OD=.(2)如图2中,∵BE是⊙O的切线,∴OF⊥BE,∵EF=FO,∴∠FEO=45°,∵∠BAE=90°,∴∠ABE=∠AEB=45°,∴AB=BE=2,设OA=OF=EF=r,则OE=r,∴r+r=2,∴r=2﹣2.(3)如图3中,由题意:直线AB,直线BH,直线CD都是⊙O的切线,∴BA=BF=2,FH=HD,设FH=HD=x,在Rt△BCH中,∵BH2=BC2+CH2,∴(2+x)2=32+(2﹣x)2,∴x=,∴CH=,∴S1=S2=,S3==3,∴.【点睛】本题属于圆综合题,考查了切线的判定和性质,勾股定理,垂径定理,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.25、(1)点C的坐标为(2,3+2);(2)OA=3;(3)OC的最大值为8,cos∠OAD=.【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=CD=2,DE=,再由∠OAD=30°知OD=AD=3,从而得出点C坐标;(2)先求出S△DCM=1,结合S四边形OMCD=知S△ODM=,S△OAD=9,设OA=x、OD=y,据此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年制药行业质量监督合同3篇
- 2024年智能电网顶管施工协议3篇
- 2024年标准简易供货与安装服务协议模板版B版
- 2024年度煤矿井下通风与防尘系统合同3篇
- 2024年度广告投放合同投放内容与效果评估3篇
- 二零二四版货运代理合同with代理范围及费用标准3篇
- 2024年个人公积金住房贷款合同新样式3篇
- 2024年房产企业个人贷款合同范本
- 2024年农产品购销蔬菜类协议范本版A版
- 2024年医院病人信息安全协议3篇
- 2022年东南亚数字经济报告
- 三大战役之淮海战役
- 动物实验福利伦理审查同意书
- 学科分类目录
- 招投标标书密封条
- 气相色谱检测器FID-培训讲解课件
- 列宁经典论著-《国家与革命》课件
- 四年级上册美术教案-18 适合纹样|苏少版
- 农业统计课件
- 26个英文字母手写体示范
- 阿利的红斗篷 完整版课件PPT
评论
0/150
提交评论