版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市第六十中学2025届数学九上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,2) D.(﹣1,2)2.已知一元二次方程,,则的值为()A. B. C. D.3.如图,、、是小正方形的顶点,且每个小正方形的边长为1,则的值为()A. B.1 C. D.4.二次根式有意义的条件是()A.x>-1 B.x≥-1 C.x≥1 D.x=-15.如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.16.下列汽车标志中,既是轴对称图形又是中心对称图形的是A. B. C. D.7.函数的图象上有两点,,若,则()A. B. C. D.、的大小不确定8.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是(3,4),反比例函数y=(k≠0)经过点C,则k的值为()A.12 B.15 C.20 D.329.下列各式计算正确的是()A.2x•3x=6xB.3x-2x=xC.(2x)2=4xD.6x÷2x=3x10.方程x2﹣6x+5=0的两个根之和为()A.﹣6 B.6 C.﹣5 D.511.某班的同学想测量一教楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为16米,它的坡度i=1:3.在离C点45米的D处,测得一教楼顶端A的仰角为37°,则一教楼AB的高度约()米(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,A.44.1B.39.8C.36.1D.25.912.已知关于x的方程ax2+bx+c=0(a≠0),则下列判断中不正确的是()A.若方程有一根为1,则a+b+c=0B.若a,c异号,则方程必有解C.若b=0,则方程两根互为相反数D.若c=0,则方程有一根为0二、填空题(每题4分,共24分)13.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.14.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=_____.15.如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.16.已知反比例函数的图像上有两点M,N,且,,那么与之间的大小关系是_____________.17.如图,O为Rt△ABC斜边中点,AB=10,BC=6,M、N在AC边上,若△OMN∽△BOC,点M的对应点是O,则CM=______.18.若是关于的一元二次方程,则__________.三、解答题(共78分)19.(8分)在平面直角坐标系中(如图),已知抛物线经过点,与轴交于点,,抛物线的顶点为点,对称轴与轴交于点.(1)求抛物线的表达式及点的坐标;(2)点是轴正半轴上的一点,如果,求点的坐标;(3)在(2)的条件下,点是位于轴左侧抛物线上的一点,如果是以为直角边的直角三角形,求点的坐标.20.(8分)某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC=13°(此时点B、C、D在同一直线上).(1)求这个车库的高度AB;(2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).(参考数据:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)21.(8分)如图,AB为⊙O的直径,弦AC的长为8cm.(1)尺规作图:过圆心O作弦AC的垂线DE,交弦AC于点D,交优弧于点E;(保留作图痕迹,不要求写作法);(2)若DE的长为8cm,求直径AB的长.22.(10分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;
(2)试通过计算说明甲、乙两人的成绩谁比较稳定?
(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)23.(10分)如图,在矩形ABCD中,CE⊥BD,AB=4,BC=3,P为BD上一个动点,以P为圆心,PB长半径作⊙P,⊙P交CE、BD、BC交于F、G、H(任意两点不重合),(1)半径BP的长度范围为;(2)连接BF并延长交CD于K,若tanKFC3,求BP;(3)连接GH,将劣弧HG沿着HG翻折交BD于点M,试探究是否为定值,若是求出该值,若不是,请说明理由.24.(10分)某农科所研究出一种新型的花生摘果设备,一期研发成本为每台6万元,该摘果机的销售量(台)与售价(万元/台)之间存在函数关系:.(1)设这种摘果机一期销售的利润为(万元),问一期销售时,在抢占市场份额(提示:销量尽可能大)的前提下利润达到32万元,此时售价为多少?(2)由于环保局要求该机器必须增加除尘设备,科研所投入了7万元研究经费,使得环保达标且机器的研发成本每台降低了1万元,若科研所的销售战略保持不变,请问在二期销售中利润达到63万元时,该机器单台的售价为多少?25.(12分)如图,已知:抛物线交x轴于A,C两点,交y轴于点B,且OB=2CO.(1)求二次函数解析式;(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.26.计算:2cos45°﹣tan60°+sin30°﹣tan45°
参考答案一、选择题(每题4分,共48分)1、C【分析】把抛物线解析式化为顶点式可求得答案.【详解】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴顶点坐标为(1,2),故选:C.【点睛】本题考查了抛物线的顶点坐标的求解,解题的关键是熟悉配方法.2、B【分析】根据题干可以明确得到p,q是方程的两根,再利用韦达定理即可求解.【详解】解:由题可知p,q是方程的两根,∴p+q=,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.3、C【分析】连接BC,AB=,BC=,AC=,得到△ABC是直角三角形,从而求解.【详解】解:连接BC,由勾股定理可得:AB=,BC=,AC=,∵∴△ABC是直角三角形,∴故选:C.【点睛】本题考查直角三角形,勾股定理;熟练掌握在方格中利用勾股定理求边长,同时判断三角形形状是解题的关键.4、C【解析】根据二次根式有意义,被开方数为非负数,列不等式求出x的取值范围即可.【详解】∵二次根式有意义,∴x-1≥0,∴x≥1,故选:C.【点睛】本题考查二次根式有意义的条件,要使二次根式有意义,被开方数为非负数;熟练掌握二次根式有意义的条件是解题关键.5、D【详解】连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE.∵E是AC中点,∴DE=EH.∴△DCE≌△HAE(AAS).∴DE=HE,DC=AH.∵F是BD中点,∴EF是△DHB的中位线.∴EF=BH.∴BH=AB﹣AH=AB﹣DC=2.∴EF=2.故选D.6、D【解析】试题分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选D.7、C【分析】根据题意先确定抛物线的对称轴及开口方向,再根据点与对称轴的远近,判断函数值的大小.【详解】解:∵,∴对称轴是x=-2,开口向下,距离对称轴越近,函数值越大,∵,∴.故选:C.【点睛】本题主要考查二次函数的图象性质及单调性的规律,掌握开口向下,距离对称轴越近,函数值越大是解题的关键.8、D【分析】分别过点D,C作x轴的垂线,垂足为M,N,先利用勾股定理求出菱形的边长,再利用Rt△ODM≌Rt△BCN得出BN=OM,则可确定点C的坐标,将C点坐标代入反比例函数解析式中即可求出k的值.【详解】如图,分别过点D,C作x轴的垂线,垂足为M,N,∵点D的坐标是(3,4),∴OM=3,DM=4,在Rt△OMD中,OD=∵四边形ABCD为菱形,∴OD=CB=OB=5,DM=CN=4,∴Rt△ODM≌Rt△BCN(HL),∴BN=OM=3,∴ON=OB+BN=5+3=8,又∵CN=4,∴C(8,4),将C(8,4)代入得,k=8×4=32,故选:D.【点睛】本题主要考查勾股定理,全等三角形的性质,待定系数法求反比例函数的解析式,掌握全等三角形的性质及待定系数法是解题的关键.9、B【解析】计算得到结果,即可作出判断【详解】A、原式=6x2,不符合题意;B、原式=x,符合题意;C、原式=4x2,不符合题意;D、原式=3,不符合题意,故选B【点睛】考查整式的混合运算,熟练掌握运算法则是解本题的关键.10、B【分析】根据根与系数的关系得出方程的两根之和为,即可得出选项.【详解】解:方程x2﹣6x+5=0的两个根之和为6,故选:B.【点睛】本题考查了根与系数的关系,解决问题的关键是熟练正确理解题意,熟练掌握一元二次方程根与系数的关系.11、C【解析】延长AB交直线DC于点F,在Rt△BCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角△ADF中利用三角函数求得AF的长,进而求得AB的长.【详解】延长AB交直线DC于点F.∵在Rt△BCF中,BFCF∴设BF=k,则CF=3k,BC=2k.又∵BC=16,∴k=8,∴BF=8,CF=83.∵DF=DC+CF,∴DF=45+83.∵在Rt△ADF中,tan∠ADF=AFDF∴AF=tan37°×(45+83)≈44.13(米),∵AB=AF-BF,∴AB=44.13-8≈36.1米.故选C.【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.12、C【分析】将x=1代入方程即可判断A,利用根的判别式可判断B,将b=1代入方程,再用判别式判断C,将c=1代入方程,可判断D.【详解】A.若方程有一根为1,把x=1代入原方程,则,故A正确;B.若a、c异号,则△=,∴方程必有解,故B正确;C.若b=1,只有当△=时,方程两根互为相反数,故C错误;D.若c=1,则方程变为,必有一根为1.故选C.【点睛】本题考查一元二次方程的相关概念,熟练掌握一元二次方程的定义和解法是关键.二、填空题(每题4分,共24分)13、【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.【详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,所以选出的2名同学刚好是一男一女的概率=.故答案为:.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.14、1.【解析】试题分析:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则a=4,b=-3,从而得出a+b.试题解析:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴a=4且b=-3,∴a+b=1.考点:关于原点对称的点的坐标.15、10【分析】当∠ABO=90°时,点O到顶点A的距离的最大,则△ABC是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O到顶点A的距离最大.
则OA=AB=10.
故答案是:10.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O到顶点A的距离的最大的条件是解题关键.16、【分析】根据反比例函数特征即可解题。【详解】∵∴∵,∴,∴故答案为【点睛】本题考查反比例函数上点的坐标特征,注意反比例函数是分别在各自象限内存在单调性。17、【分析】根据直角三角形斜边中线的性质可得OC=OA=OB=AB,根据等腰三角形的性质可得∠A=∠OCA,∠OCB=∠B,由相似三角形的性质可得∠ONC=∠OCB,,可得OM=MN,利用等量代换可得∠ONC=∠B,即可证明△CNO∽△ABC,利用外角性质可得∠ACO=∠MOC,可得OM=CM,即可证明CM=CN,利用勾股定理可求出AC的长,根据相似三角形的性质即可求出CN的长,即可求出CM的长.【详解】∵O为Rt△ABC斜边中点,AB=10,BC=6,∴OC=OA=OB=AB=5,AC==8,∴∠A=∠OCA,∠OCB=∠B,∵△OMN∽△BOC,∴∠ONC=∠OCB,,∠COB=∠OMN,∴MN=OM,∠ONC=∠B,∴△CNO∽△ABC,∴,即,解得:CN=,∵∠OMN=∠OCM+∠MOC,∠COB=∠A+∠OCA,∴∠OCM=∠MOC,∴OM=CM,∴CM=MN=CN=.故答案为:【点睛】本题考查直角三角形斜边中线的性质、等腰三角形的性质及相似三角形的判定与性质,直角三角形斜边中线等于斜边的一半;熟练掌握相似三角形的判定定理是解题关键.18、1【分析】根据一元二次方程的定义可知的次数为2,列出方程求解即可得出答案.【详解】解:∵是关于的一元二次方程,∴,解得:m=1,故答案为:1.【点睛】本题重点考查一元二次方程定义,理解一元二次方程的三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(1)是整式方程;其中理解特点(2)是解决这题的关键.三、解答题(共78分)19、(1),;(2);(3)或【分析】(1)将点A、B代入抛物线,即可求出抛物线解析式,再化为顶点式即可;
(2)如图1,连接AB,交对称轴于点N,则N(-,-2),利用相等角的正切值相等即可求出EH的长,OE的长,可写出点E的坐标;
(3)分∠EAP=90°和∠AEP=90°两种情况讨论,通过相似的性质,用含t的代数式表示出点P的坐标,可分别求出点P的坐标.【详解】解:(1)(1)将点A(-3,-2)、B(0,-2)代入抛物线,
得,,
解得,a=,c=-2,
∴y=x2+4x-2
=(x+)2-5,
∴抛物线解析式为y=x2+4x-2,顶点C的坐标为(-,-5);(2)如图1,连接AB,交对称轴于点N,则N(-,-2),,则,过作,,则,∵OH=3,∴OE=1,∴(3)①如图2,当∠EAP=90°时,
∵∠HEA+∠HAE=90,∠HAE+∠MAP=90°,
∴∠HEA=∠MAP,
又∠AHE=∠PMA=90°,,则,设,则将代入得(舍),,∴②如图3,当∠AEP=90°时,∵∠EAG+∠AEG=90°,∠AEG+∠PEN=90°,
∴∠AEG=∠EPN,
又∵∠N=∠G=90°,∴,则设,则将代入得,(舍),∴综上所述:,【点睛】此题考查了待定系数法求解析式,锐角三角函数,直角三角形的存在性等,解题关键是能够作出适当的辅助线构造相似三角形,并注意分类讨论思想的运用.20、(1)这个车库的高度AB为5米;(2)斜坡改进后的起点D与原起点C的距离为9.7米.【解析】(1)根据坡比可得=,利用勾股定理求出AB的长即可;(2)由(1)可得BC的长,由∠ADB的余切值可求出BD的长,进而求出CD的长即可.【详解】(1)由题意,得:∠ABC=90°,i=1:2.4,在Rt△ABC中,i==,设AB=5x,则BC=12x,∴AB2+BC2=AC2,∴AC=13x,∵AC=13,∴x=1,∴AB=5,答:这个车库的高度AB为5米;(2)由(1)得:BC=12,在Rt△ABD中,cot∠ADC=,∵∠ADC=13°,AB=5,∴DB=5cot13°≈21.655(m),∴DC=DB﹣BC=21.655﹣12=9.655≈9.7(米),答:斜坡改进后的起点D与原起点C的距离为9.7米.【点睛】此题主要考查了坡角的定义以、锐角的三角函数及勾股定理等知识,正确求出BC,BD的长是解题关键.21、(1)见解析;(2)10cm.【分析】(1)以点A,点C为圆心,大于AC为半径画弧,两弧的交点和点O的连线交弦AC于点D,交优弧于点E;(2)由垂径定理可得AD=CD=4cm,由勾股定理可求OA的长,即可求解.【详解】(1)如图所示:(2)∵DE⊥AC,∴AD=CD=4cm,∵AO2=DO2+AD2,∴AO2=(DE﹣AO)2+16,∴AO=5,∴AB=2AO=10cm.【点睛】本题考查了圆的有关知识,勾股定理,灵活运用勾股定理求AO的长是本题的关键.22、(1)8,6和9;(2)甲的成绩比较稳定;(3)变小【分析】(1)根据众数、中位数的定义求解即可;
(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;
(3)根据方差公式进行求解即可.【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;
在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;
故答案为8,6和9;
(2)甲的平均数是:(7+8+8+8+9)÷5=8,
则甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,
乙的平均数是:(6+6+9+9+10)÷5=8,
则甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,
所以甲的成绩比较稳定;
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.
故答案为变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.23、(1);(2)BP=1;(3)【分析】(1)当点G和点E重合,当点G和点D重合两种临界状态,分别求出BP的值,因为任意点都不重合,所以BP在两者之间即可得出答案;(2)∠KFC和∠BFE是对顶角,得到,得出EF的值,再根据△BEF∽△FEG,求出EG的值,进而可求出BP的值;(3)设圆的半径,利用三角函数表示出PO,GO的值,看用面积法求出,在中由勾股定理得出MQ的值,进而可求出PM的值即可得出答案.【详解】(1)当G点与E点重合时,BG=BE,如图所示:∵四边形ABCD是矩形,AB=4,BC=3,∴BD=5,∵CE⊥BD,∴,∴,在△BEC中,由勾股定理得:,∴,当点G和点D重合时,如图所示:∵△BCD是直角三角形,∴BP=DP=CP,∴,∵任意两点都不重合,∴,(2)连接FG,如图所示:∵∠KFC=∠BFE,tanKFC3,∴,∴,∴,∵BG是圆的直径,∴∠BFG=90°,∴∠GFE+∠BFE=90°,∵CE⊥BD,∴∠FEG=∠FEB=90°,∴∠GFE+∠FGE=90°,∴∠BFE=∠FGE∴△BEF∽△FEG,∴,∴,∴,∴BG=EG+BE=2,∴BP=1,(3)为定值,过作,连接,,交GH于点O,如下图所示:设,则,,∴,∴,∴,∴,∴,∴【点睛】本题考查了动圆问题,矩形的性质,面积法的运用,三角函数,相似三角形的判定和性质等知识点,属于圆和矩形的综合题,难度中等偏上,利用数形结合思想和扎实的基础是解决本题的关键.24、(1)在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台;(2)要使二期利润达到63万元,销售价应该为10万元/台.【分析】(1)先根据等量关系式:总利润=(售价-成本)销售量,列出函数关系式,再将代入函数关系式得出方程求解即得;(2)先根据等量关系式:总利润=(售价-新成本)销售量-7,列出函数关系式,再将代入函数关系式得出方程求解即得.【详解】(1)根据题意列出函数关系式如下:当时,,解得,.∵要抢占市场份额∴.答:在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台.(2)降低成本之后,每台的成本为5万元,每台利润为万元,销售量.依据题意得,当时,,解得,.∵要继续保持扩大销售量的战略∴答:要使二期利润达到63万元,销售价应该为10万元/台.【点睛】本题考查函数解析式及解一元二次方程,解题关键是正确找出等量关系式:总利润=(售价-成本)销售量.25、(1)y;(2);(3)(1,-3)或(1,)或(1,1+)或(1,1-)【分析】(1)利用待定系数法求出A、B、C的坐标,然后把
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省十堰市第二中学高中地理必修一人教版导学案232气旋反气旋
- 工程现场签证管理流程
- 湖北省普通高中高三下学期高考押题预测卷化学试题-1
- 法律案例分析单选题100道及答案解析
- 安徽省县中联盟2023-2024学年高一下学期5月联考(B卷)历史试卷2
- 河北省涞水波峰中学高三下学期语文专练36
- 2《烛之武退秦师》试讲稿2023-2024学年高中语文必修下册
- 理科数学一轮复习高考帮试题第12章第1讲排列与组合(习思用数学理)
- 102分子动理论的初步知识(教师版)八年级物理下册讲义(沪粤版)
- 4S店装修工程管理协议
- 中央企业商业秘密安全保护技术指引2015版
- 熔化焊接与热切割操作规程
- EBO管理体系与案例分享
- 计算机网络自顶向下(第七版)课后答案-英文
- 临时工程经济比选方案
- 污水管道工程监理规划
- GB/T 20934-2016钢拉杆
- 临床常见问题的康复评定与处理
- Unit3 Topic2-SectionA课件- 仁爱版九年级英语上册
- 养老型年金险产品理念课件
- 江苏开放大学行政管理学2020考试复习题答案
评论
0/150
提交评论