版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省玉溪市2025届九上数学期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.我们知道,一元二次方程可以用配方法、因式分解法或求根公式进行求解.对于一元三次方程ax3+bx2+cx+d=0(a,b,c,d为常数,且a≠0)也可以通过因式分解、换元等方法,使三次方程“降次”为二次方程或一次程,进而求解.这儿的“降次”所体现的数学思想是()A.转化思想 B.分类讨论思想C.数形结合思想 D.公理化思想2.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P,则P的值为()A. B. C.或 D.或3.下列说法中,正确的是()A.如果k=0,是非零向量,那么k=0 B.如果是单位向量,那么=1C.如果||=||,那么=或=﹣ D.已知非零向量,如果向量=﹣5,那么∥4.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是(
)A.①④⑤ B.①③④⑤ C.①③⑤ D.①②③5.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=4,cos∠ABC=,则BD的长为()A.2 B.4 C.2 D.46.如图,若为正整数,则表示的值的点落在()A.段① B.段② C.段③ D.段④7.下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.8.已知一元二次方程,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.两个根都是自然数 D.无实数根9.如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A.100° B.105° C.110° D.115°10.如图,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为xm,则可以列出关于x的方程是()A.x(26-2x)=80 B.x(24-2x)=80C.(x-1)(26-2x)=80 D.x(25-2x)=80二、填空题(每小题3分,共24分)11.在一个不透明的盒子里有2个红球和个白球,这些求除颜色外其余完全相同,摇匀后随机摸出一个,摸出红球的概率是,则的值为__________.12.中,若,,,则的面积为________.13.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.14.如图,直角三角形的直角顶点在坐标原点,,若点在反比例函数的图象上,则经过点的反比例函数解析式为___;15.一元二次方程x2﹣5x=0的两根为_________.16.如图,在平行四边形中,是边上的点,,连接,相交于点,则_________.17.已知中,,,,,垂足为点,以点为圆心作,使得点在外,且点在内,设的半径为,那么的取值范围是______.18.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).三、解答题(共66分)19.(10分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?20.(6分)在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为,记旋转角为.(1)如图①,当时,求点的坐标;(2)如图②,当点落在的延长线上时,求点的坐标;(3)当点落在线段上时,求点的坐标(直接写出结果即可).21.(6分)已知:关于x的方程,根据下列条件求m的值.(1)方程有一个根为1;(2)方程两个实数根的和与积相等.22.(8分)在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是________;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫整点.点A恰好为整点,若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a的取值范围.23.(8分)如图,点A,C,D,B在以O点为圆心,OA长为半径的圆弧上,AC=CD=DB,AB交OC于点E.求证:AE=CD.24.(8分)解方程.(1)1x1﹣6x﹣1=0;(1)1y(y+1)﹣y=1.25.(10分)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=3m,BD=9m,求旗杆AB的高.26.(10分)已知关于的一元二次方程有两个不相等的实数根(1)求的取值范围;(2)若为正整数,且该方程的根都是整数,求的值.
参考答案一、选择题(每小题3分,共30分)1、A【分析】解高次方程的一般思路是逐步降次,所体现的数学思想就是转化思想.【详解】由题意可知,解一元三次方程的过程是将三次转化为二次,二次转化为一次,从而解题,在解题技巧上是降次,在解题思想上是转化思想.故选:A.【点睛】本题考查高次方程;通过题意,能够从中提取出解高次方程的一般方法,同时结合解题过程分析出所运用的解题思想是解题的关键.2、D【分析】分情况讨论后,直接利用概率公式进行计算即可.【详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=当白球2个,红球1个时:摸到的红球的概率为:P=故摸到的红球的概率为:或故选:D【点睛】本题考查了概率公式,掌握概率公式及分类讨论是解题的关键.3、D【分析】根据平面向量的性质一一判断即可.【详解】解:A、如果k=0,是非零向量,那么k=0,错误,应该是k=.B、如果是单位向量,那么=1,错误.应该是=1.C、如果||=||,那么=或=﹣,错误.模相等的向量,不一定平行.D、已知非零向量,如果向量=﹣5,那么∥,正确.故选:D.【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.4、C【分析】①根据对称轴x=1,确定a,b的关系,然后判定即可;②根据图象确定a、b、c的符号,即可判定;③方程ax2+bx+c=3的根,就y=3的图象与抛物线交点的横坐标判定即可;④根据对称性判断即可;⑤由图象可得,当1<x<4时,抛物线总在直线的上面,则y2<y1.【详解】解:①∵对称轴为:x=1,∴则a=-2b,即2a+b=0,故①正确;∵抛物线开口向下∴a<0∵对称轴在y轴右侧,∴b>0∵抛物线与y轴交于正半轴∴c>0∴abc<0,故②不正确;∵抛物线的顶点坐标A(1,3)∴方程ax2+bx+c=3有两个相等的实数根是x=1,故③正确;∵抛物线对称轴是:x=1,B(4,0),∴抛物线与x轴的另一个交点是(-2,0)故④错误;由图象得:当1<x<4时,有y2<y1;故⑤正确.故答案为C.【点睛】本题考查了二次函数的图像,考查知识点较多,解答的关键在于掌握并灵活应用二次函数知识.5、D【分析】由锐角三角函数可求∠ABC=60°,由菱形的性质可得AB=BC=4,∠ABD=∠CBD=30°,AC⊥BD,由直角三角形的性质可求BO=OC=2,即可求解.【详解】解:∵cos∠ABC=,∴∠ABC=60°,∵四边形ABCD是菱形,∴AB=BC=4,∠ABD=∠CBD=30°,AC⊥BD,∴OC=BC=2,BO=OC=2,∴BD=2BO=4,故选:D【点睛】此题主要考查三角函数的应用,解题的关键是熟知菱形的性质及解直角三角形的方法.6、B【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵1.又∵x为正整数,∴1,故表示的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.7、C【分析】根据轴对称图形和中心对称图形的定义,即可得出答案.【详解】A.不是轴对称图形,也不是中心对称图形;B.不是轴对称图形,也不是中心对称图形;C.是轴对称图形,也是中心对称图形;D.是轴对称图形,不是中心对称图形.故选:C.【点睛】轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、A【详解】解:∵a=2,b=-5,c=3,∴△=b2-4ac=(-5)2-4×2×3=1>0,∴方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,熟记公式正确计算是解题关键,难度不大.9、D【解析】根据平行四边形对角相等,邻角互补即可求解.【详解】解:在▱ABCD中,∠A=∠C,∠A+∠D=180°,∵∠A+∠C=130°,∴∠A=∠C=65°,∴∠D=115°,故选D.【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键.10、A【分析】设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m,根据题意可列出方程.【详解】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m,根据题意得:x(26-2x)=1.故选A.【点睛】本题考核知识点:列一元二次方程解应用题.解题关键点:找出相等关系,列方程.二、填空题(每小题3分,共24分)11、1【分析】根据红球的概率结合概率公式列出关于n的方程,求出n的值即可【详解】解:∵摸到红球的概率为∴解得n=1.
故答案为:1.【点睛】本题考查概率的求法与运用,根据概率公式求解即可:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率12、【分析】过点A作BC边上的高交BC的延长线于点D,在中,利用三角函数求出AD长,再根据三角形面积公式求解即可.【详解】解:如图,作于点D,则,在中,所以的面积为故答案为:.【点睛】本题主要考查了三角函数,灵活添加辅助线利用三角函数求出三角形的高是解题的关键.13、y=-5(x+2)2-1【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移1个单位长度,
∴新抛物线顶点坐标为(-2,-1),
∴所得到的新的抛物线的解析式为y=-5(x+2)2-1.
故答案为:y=-5(x+2)2-1.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.14、【解析】构造K字型相似模型,直接利用相似三角形的判定与性质得出,而由反比例性质可知S△AOD==3,即可得出答案.【详解】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,
∵∠BOA=90°,
∴∠BOC+∠AOD=90°,
∵∠AOD+∠OAD=90°,
∴∠BOC=∠OAD,
又∵∠BCO=∠ADO=90°,
∴△BCO∽△ODA,
∴,
∴,∴S△BCO=S△AOD
∵S△AOD===3,∴S△BCO=×3=1∵经过点B的反比例函数图象在第二象限,
故反比例函数解析式为:y=.
故答案为.【点睛】此题主要考查了相似三角形的判定与性质以及反比例函数数的性质,正确得出S△BOC=1是解题关键.15、0或5【解析】分析:本题考查的是一元二次方程的解法——因式分解法.解析:故答案为0或5.16、【分析】设△AEO的面积为a,由平行四边形的性质可知AE∥CD,可证△AEO∽△CDO,相似比为AE:CD=EO:DO=3:4,由相似三角形的性质可求△CDO的面积,由等高的两个三角形面积等于底边之比,可求△ADO的面积,得出的值.【详解】解:设△AEO的面积为a,∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,∵,∴AE=CD=AB,由AB∥CD知△AEO∽△CDO,∴,∴,∵设△AEO的面积为a,,∴S△CDO=,∵△ADO和△AEO共高,且EO:DO=3:4,,∴S△ADO=,则S△ACD=S△ADO+S△CDO=,∴故答案为:.【点睛】本题考查了相似三角形的判定与性质.关键是由平行线得出相似三角形,利用相似比求相似三角形的面积,等高的三角形面积.17、【分析】先根据勾股定理求出AB的长,进而得出CD的长,再求出AD,BD的长,由点与圆的位置关系即可得出结论.【详解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,
∴AB==1.
∵CD⊥AB,∴CD=.
∵AD•BD=CD2,
设AD=x,BD=1-x,得x(1-x)=,又AD>BD,解得x1=(舍去),x2=.∴AD=,BD=.
∵点A在圆外,点B在圆内,∴BD<r<AD,
∴r的范围是,
故答案为:.【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.18、一4【分析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.【详解】因为∠MAD=45°,AM=4,所以MD=4,因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MBtan30°=4.所以CD=4-4.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.三、解答题(共66分)19、(1)y=60+10x;(2)定价为33元,最大利润是810元.【分析】(1)根据价格每降低1元,平均每月多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;
(2)由利润=(售价-成本)×销售量列出函数关系式,求出最大值.【详解】解:(1)根据题意,得:y=60+10x,(2)设所获利润为W,则W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,∴当x=3时,W取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.【点睛】本题主要考查二次函数的应用,由利润=(售价-成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.20、(1)点的坐标为;(2)点的坐标为;(3)点的坐标为.【分析】(1)过点作轴于根据已知条件可得出AD=6,再直角三角形ADG中可求出DG,AG的长,即可确定点D的坐标.(2)过点作轴于于可得出,根据勾股定理得出AE的长为10,再利用面积公式求出DH,从而求出OG,DG的长,得出答案(3)连接,作轴于G,由旋转性质得到,从而可证,继而可得出结论.【详解】解:(1)过点作轴于,如图①所示:点,点.,以点为中心,顺时针旋转矩形,得到矩形,,在中,,,点的坐标为;(2)过点作轴于于,如图②所示:则,,,,,,,点的坐标为;(3)连接,作轴于G,如图③所示:由旋转的性质得:,,,,,,在和中,,,,,点的坐标为.【点睛】本题考查的知识点是坐标系内矩形的旋转问题,用到的知识点有勾股定理,全等三角形的判定与性质等,做此类题目时往往需要利用数形结合的方法来求解,根据每一个问题做出不同的辅助线是解题的关键.21、(1);(2)【分析】(1)将1代入原方程,可得关于m的方程,解此方程即可求得答案;(2)利用根与系数的关系列出方程即可求得答案.【详解】(1)方程的根1代入方程得:=0,整理得:=0,∵∴故答案为:(2)方程两个实数根的和为方程两个实数根的积为,依题意得:,即:,分解因式得:解得:或2,当时,原方程为:,方程有实数根;当时,原方程为:,,方程没有实数根,∴不符合题意,舍去;m的值为:【点睛】本题考查了根与系数的关系及求解一元二次方程,熟练掌握一元二次方程根与系数的关系是解题的关键.22、(1)①直线x=1;②b=-1a;(1)-1≤a<-1或1<a≤1.【分析】(1)①根据抛物线的对称性可以直接得出其对称轴;②利用对称轴公式进一步求解即可;(1)分两种情况:①,②,据此依次讨论即可.【详解】解:(1)①∵当x=0时,y=c,∴点A坐标为(0,c),∵点A向右平移1个单位长度,得到点B,∴点B(1,c),∵点B在抛物线上,∴抛物线的对称轴是:直线x=1;故答案为:直线x=1;②∵抛物线的对称轴是直线:x=1,∴,即;(1)①如图,若,因为点A(0,c),B(1,c)都是整点,且指定区域内恰有一个整点,因此这个整点D的坐标必为(1,c-1),但是从运算层面如何保证“恰有一个”呢,与抛物线的顶点C(1,c-a)做位置与数量关系上的比较,必须考虑到紧邻点D的另一个整点E(1,c-1)不在指定区域内,所以可列出不等式组:,解得:;②如图,若,同理可得:,解得:;综上所述,符合题意的a的取值范围是-1≤a<-1或1<a≤1.【点睛】本题主要考查了抛物线的性质和一元一次不等式组的综合运用,熟练二次函数的性质、灵活应用数形结合的数学思想是解题关键.23、证明见解析【解析】试题分析:连接OC,OD,根据弦相等,得出它们所对的弧相等,得到=,再得到它们所对的圆心角相等,证明得到又因为即可证明.试题解析:证明:方法一:连接OC,OD,∵AC=CD=DB,=,∴,∴,∵,∴,,,,,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司办公场地租赁的合同范文
- (限制性股票模式)股权激励协议范本
- 车辆经营合作协议书的范文格式
- 机械施工安全责任合同(施工)
- 高校毕业生就业见习单位协议
- 中考物理复习专项单选、填空题组1课件
- 第14课 历史上的疫病与医学成就 课件-高二历史统编版(2019)选择性必修2经济与社会生活
- 11我与社会(原卷版)
- 高中英语人教版必修3Unit3TheMillionPoundBankNoteperiod4测试(原卷版)
- 天津市十二区重点学校高三下学期联考(二)历史
- 安徽省亳州市黉学英才中学2024-2025学年七年级上学期期中生物学试题(含答案)
- 期中综合检测(1-4单元)(试题)- 2024-2025学年二年级上册数学人教版
- 沪粤版初中物理八上八年级上学期物理期中试卷(解析版)
- 江苏省苏州市苏州工业园区苏州工业园区景城学校2023-2024学年八年级上学期期中数学试题(解析版)
- 高中挺身式跳远-教案
- 2024年消防宣传月知识竞赛考试题库500题(含答案)
- 国开2024年秋《机电控制工程基础》形考任务1答案
- 食品安全工作操作流程(5篇)
- 《中华民族大团结》(初中)-第10课-伟大梦想-共同追求-教案
- 《非计划性拔管》课件
- (最新整理)终身教育(理论基础)
评论
0/150
提交评论