版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
金融计量学复旦大学金融研究院第四章一元时间序列分析方法
学习目标:了解平稳性和白噪声过程;熟悉随机序列模型;熟悉ARIMA过程;掌握时间序列的平稳性和单位根检验。第四章一元时间序列分析方法第一节时间序列的相关概念第二节随机序列模型第三节单整自回归移动平均模型第四节平稳性与单位根检验时间序列的相关概念第一节时间序列的相关概念一、平稳性平稳性是时间序列分析的基础。判断一个序列平稳与否非常重要,因为一个序列是否平稳会对它的行为及其性质产生重要的影响。在时间序列平稳性,一般包括下列两类平稳过程:1、严格平稳过程(StrictlyStationaryProcess)如果对所有的t,任意正整数n和任意n个正整数(),()的联合分布与()的联合分布是相同的,即:时间序列的相关概念2、弱平稳性过程(WeaklyStationaryProcess)如果一个时间序列的均值,方差在时间过程上保持是常数,并且在任何两时期之间的协方差值仅依赖于该两时期间的距离或滞后,而不依赖于计算这个协方差的实际时间,则称时间序列是弱平稳的。弱平稳的时间序列有如下性质:可见,如果一个时间序列概率分布的所有阶矩都不随时间变化,那它就是严格平稳的;而如果仅仅是一阶矩和二阶矩(即均值和方差)不随时间变化,那它就是弱平稳的。
时间序列的相关概念二、自协方差(auto-covariance)决定是如何与它自身的先前值相关的,对于一个平稳的时间序列,它只依赖于与之差。其中,被称为自协方差函数。另一种更为简洁的方法使用自相关系数来描述他们之间的关系。考虑弱平稳时间序列,当与它的过去值线性相关时,可以把相关系数的概念推广到自相关系数,与的相关系数称为的间隔为
的自相关系数,通常记为,在弱平稳性的假定下它只是的函数,定义==
时间序列的相关概念三、白噪声过程如果时间序列是一个有有限均值和有限方差的、独立同分布的随机变量序列,则称时间序列为白噪声。特别的,若时间序列还服从均值为0,方差为的正态分布,则这个序列称为高斯白噪声。它是其它各类型时间序列的重要组成部分,在金融市场效率理论中具有重要的意义。对于白噪声序列,自相关系数为零。在实际应用中,如果所有样本的自相关函数接近为零,则认为这个序列为白噪声序列。若一个随机过程满足:
则我们称之为白噪声过程(whitenoiseprocess)。随机序列模型第二节随机序列模型若对每一个固定的t,是一个随机变量,则,,┅,┅为随机时间序列。而揭示随机时间序列自身变化规律和相关关系的数学表达式就是时间序列分析模型。随机时间序列分析模型分为三类:自回归模型(auto-regressivemodel,AR)、移动平均模型(moving-averagemodel,MA)和自回归移动平均模型(auto-regressivemovingaveragemodel,ARMA)。对于任一个时间序列,怎样判断它是遵循纯AR过程(若是的话,阶数p取什么值),纯MA过程,(若是的话,阶数q取什么值)或是ARMA模型,此时p和q各取多少。我们将遵循以下四个步骤对这三个模型做一详细介绍:
随机序列模型步骤一:识别。就是找出适当的p和q值。我们即将说明怎样借助相关图和偏相关图来解决此类问题。步骤二:估计。一旦辨别适当的p和q值,下一步便是估计模型中所含自回归和移动平均项的参数。步骤三:诊断。选定模型并估计其参数之后,下一步就要看所选的模型对数据拟合的是否够好。对所选模型的一个简单的检验,是看从该模型估计出来的残差是不是白噪声;如果是,就可接受这个具体的拟合;如果不是,我们必须重新在做。步骤四:预测。ARMA建模方法之所以得以普及,理由之一是它在预测方面的成功。有许多事例用这个方法做出的预测比用传统的计量经济建模方法做出的预测更为可靠,特别是在短期预测方面。随机序列模型一、自回归模型(AR)若一个时间序列可表示为(4.12)其中,为白噪声,,,则称为一阶自回归过程,或简称为。自回归模型是时间序列表示为它的先前值与一个误差项的线性函数。在p阶自回归中,、,…,是自回归参数,它表明每改变一个单位时间值时,对所产生的影响,它是根据样本观测值来估计的参数。
随机序列模型2、AR模型阶的识别在实际应用中,一个AR时间序列的p阶是未知的,必须根据实际情况来决定。这个问题叫做AR模型的阶的决定。一般可以通过两种方法:第一种方法是利用偏自相关函数(partialautocorrelationfunction,PACF),第二种方法是用某个信息准则函数。(1)偏自相关函数(PACF)偏自相关就是和之间的,除去居中的诸(即)的影响后的相关。其相关程度可用偏自相关系数度量。进行回归对一个模型,间隔为的样本偏自相关系数不应为零,而对所有,应接近零,我们利用这一性质来决定p阶。
随机序列模型(2)采用信息准则法判别模型阶数在实际应用中,很难利用自相关函数来确定模型的合理阶数。较为简便的方法是,所选定的阶数应使得信息准则的数值达到最小。对于信息准则,一般应用赤池(Akaike)准则信息准则(AIC)和许瓦兹(Schwarz)贝叶斯信息准则(SBIC)。随机序列模型3、参数估计对一个模型,我们常用条件最小二乘法来估计其参数,条件最小二乘是从第个观测值开始的。4、模型验证对实际数据所时拟合的模型,要仔细地验证它的合理性。若模型是合理的,其残差序列应该是白噪声。残差的样本自相关函数和Ljung-Box统计量可用来检验与一个白噪声的接近程度。对模型,Ljung-Box统计量渐进服从自由度为m-p的分布。如果所拟合的模型经经验验证是不合理的,那么就需要对它进行修正。随机序列模型5、预测预测是时间序列分析的一个重要应用。向前一步预测向前两步预测向前多步预测随机序列模型6、判定预测是否精确在实际中应用中,通常是对整个样本外的区间进行预测,然后将其与实际值比较,把他们之间的差异用某种方法加总。对第i个观测值的预测误差定义为其实际值和预测值之间的差值,再求其平方或取其绝对值使各项为正后进行加总。随机序列模型[案例说明4-1]上证指数收益率的AR建模本案例的方法来自高铁梅(2006)《计量经济分析方法与建模》,我们将数据进行了更新。数据选取了上证收盘指数(1991年1月~2014年10月)的月度时间序列S作为研究对象,用AR(1)模型描述其变化规律。在此,对其做变化率,
这样便得到了变化率序列。一般来讲,股价指数序列并不是一个平稳的序列,而通过变化后的变化率数据,是一个平稳序列,可以作为我们研究、建模的对象。对上证收益率数据拟合。在此,记上证股价指数变化率序列为sr,建立如下模型:[案例说明4-1]上证指数收益率的AR建模R-squared0.000997
Meandependentvar2.010166AdjustedR-squared-0.002533
S.D.dependentvar16.90529S.E.ofregression16.92668
Akaikeinfocriterion8.502652Sumsquaredresid81083.07
Schwarzcriterion8.528284Loglikelihood-1209.628
Hannan-Quinncriter.8.512927F-statistic0.282436
Durbin-Watsonstat1.998880Prob(F-statistic)0.595526InvertedARRoots
-.03图4-2:AR(1)回归结果[案例说明4-1]上证指数收益率的AR建模图4-3:上证指数收益率序列及其拟合值在图4-3中,红色实线(上方)是上证指数变化率序列,绿色实线(上方与红色实线相交)是AR(1)模型的拟合值,蓝色实线(下方)是真实值与拟合值的残差。从该图可以看出我国上证股价指数变化率序列在1991-2014年之间变化很大,而后逐渐趋于平稳。[案例说明4-1]上证指数收益率的AR建模随机序列模型[案例说明4-2]应用AR(1)进行预测面,我们利用建立的AR(1)模型进行预测。我们选取2006年1月至2014年12月的我国广义货币供应量(M2)月度数据的时间序列,进行AR(1)建模并预测。随机序列模型图4-5:利用AR模型进行预测随机序列模型二、移动平均模型(MA)
若一个随机过程可为下面形式:(4.40)则称方程式(4.40)表示的是q阶的移动平均过程(movingaverage),表示为。在模型中,为参数,为白噪声过程。最简单的移动平均过程是,可表达为:
随机序列模型1、MA模型阶的识别自相关函数是识别MA模型的阶的有用工具。一个时间序列具有自相关函数,若但对有,则服从一个模型。2、MA模型估计估计MA模型通常用最大似然法。有两种方法求MA模型的似然函数。第一种是条件似然法,即假定初始的扰动(即,)都是0;这样,计算似然函数所需要的抖动可以递推得到。第二种方法是把初始抖动,当作模型的附加参数与其它参数一起估计出来。随机序列模型3、MA模型预测由于MA模型有有限记忆性,它的点预测很快可以打到序列的均值。设预测原点为,对MA(1)过程的向前1步预测,模型为
取条件期望,我们有向前1步预测误差的方差为。随机序列模型三、ARMA模型自回归模型和移动平均模型是时间序列中最基本的两种模型类别,将这两种基本的模型类别结合起来,就产生了自回归移动平均模型(ARMA)。若一个时间序列可表示为:
(4.51)或者表达为:
(4.52)则称时间序列模型为自回归移动平均模型,表示为。在模型中,和分别表示为滞后之后p和q阶的表达式,并称其为自回归算子和移动平均算子。随机序列模型[案例说明4-3]应用EViews建立ARMA模型的实例——以中国联通(600050)为例使用的数据为联通公司股票的日股价序列,期限为2003年1月2日至2014年12月31日,共2911个样本观测值。该模型涉及三个步骤:识别、估计和诊断性检验。首先,通过观察自相关系数,对数据结构加以识别。(1)估计高达36阶的自相关系数(2)采用信息准则法判别模型阶数随机序列模型[案例4-4]在EViews中运用ARMA模型进行预测一旦选定了模型的阶数并利用一定的数据完成了模型估计后,就可以利用该模型对序列的未来值进行预测。估计出所需模型并在EViews中打开输出结果窗口后,点击Forecast图标。EViews使用两种预测方法:动态预测和静态预测。动态选项从预测第一项开始,计算多步预测值;而静态选项则计算一系列向前一步的预测值,此时每生成一个预测值,就将样本范围向前移动一个观测值,以便将真实值而非预测值作为滞后因变量。在此,我们应用了上证指数1990年12月19日至2014年12月31日时间区间,共6158交易日的样本数。采用EViews软件的Forecast预测模型,动态预测和静态预测的结果分别如下:随机序列模型(a)动态预测随机序列模型(b)静态预测单整自回归移动平均模型第三节单整自回归移动平均模型单整自回归移动平均模型(autoregressiveintegratemovingaveragemodels,ARIMA)最先由博克斯(Boy)和詹金斯(Jenkins)在1976年提出的。该模型是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值及其随机误差项的现值和滞后值进行回归所建立的模型。目前,该模型已经在众多领域和研究中得到应用,并证明了其较强的解释力和适应性。单整自回归移动平均模型一、ARIMA模型介绍假定存在一个随机过程含有个单位根,则经次差分后就变成一个平稳过程,这样的性质称为齐次非平稳性。即若是平稳时间序列,则称是d阶齐次非平稳序列,这里表示d阶差分。考虑如下形式的模型:(4.56)其中,是平稳的自回归算子,为可逆的移动平均算子。而是对序列进行d阶差分之后的序列,并且得到的该序列具有平稳性特征。若用替代,则(4.56)式就可以表示为:(4.57)则该表达式与前面所属的ARMA模型的表达式相同。而方程(4.57)则表示的是一个ARIMA模型。二、ARIMA模型的确定——以上证指数为例为说明模型参数的相关参数的确定,在此我们选取上证指数为例进行解释。在此,选取上证指数1992年1月2日至2014年9月30日为观测区间。首先,确定ARIMA(p,d,q)模型中的d值。其次,对ARIMA(p,1,q)模型中的p和q数值进行确定。从收益率的自相关系数和偏自相关系数图中我们可以看到,它们都是拖尾的,因此可设定为过程。收益率的自相关函数第1阶是显著的,从第2阶开始下降很大,数值也不太显著,因此先设定q值为1。收益率的偏相关函数也是第1阶很显著,从第2阶开始下降很大,因此设定p值为1,于是初步建立模型。单整自回归移动平均模型单整自回归移动平均模型三、ARIMA过程应用和结果解释为分析ARIMA过程,在此,我们选取上证指数1990年12月19日至2014年12月31日为观测区间,共6158个观测样本。应用的软件为SAS9.1。单整自回归移动平均模型四、ARIMA过程的SAS程序模拟除了利用SAS程序进行ARIMA过程分析之外,我们还可以通过这一程序进行ARIMA过程模拟。在此,我们应用了朱世武(2004)所著的《基于SAS系统的金融计算》中的一个例子进行说明。对ARIMA(0,1,1)进行SAS模拟实现。假定初始数值=0.01,产生1000个来自,的随机时间序列。单整自回归移动平均模型图4-17:ARIMA的SAS模拟
平稳性与单位根检验第四节平稳性与单位根检验一、非平稳性检验的必要性从前几节知,当时间序列含有单位根时,它就是一个非平稳时间序列。而非平稳时间序列恰好具有这种齐次非平稳特征,即通过足够次数的差分就可以转换为一个平稳的时间序列。1.单整性的定义若一个非平稳时间序列必须经过d次差分后才能变换成一个平稳的、可逆的时间序列,则称具有d阶单整性,用表示。平稳性与单位根检验2.伪回归问题如果对非平稳性数据进行回归,则在回归结果中,我们可能会发现R2很高,t值也极高,这似乎表示变量之间存在着很好的拟合关系。但是,同时会发现杜宾-沃森d值偏低。这时,则可能存在伪回归(spuriousregressions)现象发生。即回归结果是不正确的。Granger和Newbold曾经提出一个良好的经验规则:当时,所估计的回归就有谬误之嫌。有时候时间序列的高度相关仅仅是因为两者同时随时间有或上或下变动的趋势,并没有真正的联系。这种情况就称为伪回归。平稳性与单位根检验二、两种类型的平稳性通常,有两种类型被用来描述非平稳性,它们是带漂移的随机游走模型和趋势平稳过程。其中,带漂移的随机游走模型表达为:
趋势平稳过程是因其在线性趋势附近而得名,此过程表达为:
在上述情况下,是白噪声扰动项。平稳性与单位根检验图4-18随机游走与带漂移的随机游走时间序列图平稳性与单位根检验
三、单位根检验1.ADF检验检验经济时间序列是否平稳,需要先检验单位根的存在。常用测验单位根的方法是由Dickey和Fuller(Fuller,1976;DickeyandFuller,1979)提出的Dickey-Fuller(DF)检验,即单位根检验。开始模型:其中,是随机误差项。平稳性与单位根检验2.ADF检验模型的确定ADF检验模型是一般形式,然而是否应该包含常数项,是否包含时间趋势项,以及如何确定最优滞后阶数p,这是一个需要解决的现实问题。首先,我们来看如何判断检验模型是否应该包含常数项与时间趋势项。其次,我们来看如何确定检验模型的最优滞后阶数。3.菲利普斯-配荣(Phillips-Perron,PP)检验PP检验针对的是回归模型的干扰项存在异方差或序列相关的现象。回归模型的三种形式及检验规则与DF检验相同。但PP检验下,这两个统计量的计算相对复杂,是在对应DF统计量的形式上加以修正。但PP检验比照的临界值分布表和DF检验下的三种回归形式下的临界值分布表相同。平稳性与单位根检验[案例说明4-5]运用EVIEWS进行上证指数单位根检验对上证指数1990.12.19-2014.12.31的上证指数日收盘序列进行单位根检验。根据模型所示,计算得到的ADF统计量-0.002048,大于临界值,故不能拒绝被检验的指数序列非平稳的零假设。对其一阶差分序列进行ADF检验,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年适用型房地产劳动协议范例
- 2024商铺局部改造施工协议样本
- 2024年数据保护与信息安全保密协议
- 2024年合作投资资金安排协议
- 2024年项目顾问协议模板详解
- 2024非金融机构借款协议示例
- 2024年商用中央空调购销协议要约
- 2024年度工程设计协议格式
- 2024年定制门卫劳务服务协议范本
- 2024年公司重组并购协议示例
- 资产 评估 质量保证措施
- 小学二年级上册道德与法治-9这些是大家的-部编ppt课件
- 《矿山机械设备》复习题
- 冷库工程特点施工难点分析及对策
- 中国古代楼阁PPT课件
- 排舞教案_图文
- 简单趋向补语:V上下进出回过起PPT课件
- 超声检测工艺卡
- 公司“师带徒”实施方案
- 《内科护理学》病例分析(完整版)
- 5GQoS管理机制介绍
评论
0/150
提交评论