2022年江苏省泰州市泰兴实验中学九年级数学第一学期期末考试模拟试题含解析_第1页
2022年江苏省泰州市泰兴实验中学九年级数学第一学期期末考试模拟试题含解析_第2页
2022年江苏省泰州市泰兴实验中学九年级数学第一学期期末考试模拟试题含解析_第3页
2022年江苏省泰州市泰兴实验中学九年级数学第一学期期末考试模拟试题含解析_第4页
2022年江苏省泰州市泰兴实验中学九年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列说法中,不正确的个数是()①直径是弦;②经过圆内一定点可以作无数条直径;③平分弦的直径垂直于弦;④过三点可以作一个圆;⑤过圆心且垂直于切线的直线必过切点.()A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,平移二次函数的图象能够与二次函数的图象重合,则平移方式为()A.向左平移个单位,向下平移个单位B.向左平移个单位,向上平移个单位C.向右平移个单位,向下平移个单位D.向右平移个单位,向上平移个单位3.如图,在平面直角坐标系中,点M的坐标为M(,2),那么cosα的值是()A. B. C. D.4.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.只有一个实数根5.2020的相反数是()A. B. C.-2020 D.20206.如图,△ABC中,∠C=90°,∠B=30°,AC=,D、E分别在边AC、BC上,CD=1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()A.2 B.3 C.2 D.37.如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A.100° B.105° C.110° D.115°8.如图,在中,是边上一点,延长交的延长线于点,若,则等于()A. B. C. D.9.如图,两个菱形,两个等边三角形,两个矩形,两个正方形,各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A. B. C. D.10.下列四个几何体中,主视图为圆的是()A. B. C. D.11.如果关于x的一元二次方程有实数根,那么m的取值范围是()A. B. C. D.12.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF,其中正确的是()A.①③ B.②④ C.①③④ D.②③④二、填空题(每题4分,共24分)13.绕着A点旋转后得到,若,,则旋转角等于_____.14.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为____________.15.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)16.一个圆锥的母线长为10,高为6,则这个圆锥的侧面积是_______.17.是方程的解,则的值__________.18.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上的一个动点,则PF+PE的最小值为______________三、解答题(共78分)19.(8分)方方驾驶小汽车匀速地从地行驶到地,行驶里程为千米,设小汽车的行驶时间为(单位:小时),行驶速度为(单位:千米/小时),且全程速度限定为不超过千米/小时.(1)求关于的函数表达式,并写出自变量的取值范围;(2)方方上午点驾驶小汽车从地出发;①方方需在当天点分至点(含点分和点)间到达地,求小汽车行驶速度的范围;②方方能否在当天点分前到达地?说明理由.20.(8分)(1)①如图1,请用直尺(不带刻度)和圆规作出的内接正三角形(按要求作图,不要求写作法,但要保留作图痕迹).②若的内接正三角形边长为6,求的半径;(2)如图2,的半径就是(1)中所求半径的值.点在上,是的切线,点在射线上,且,点从点出发,以每秒1个单位的速度沿射线方向移动,点是上的点(不与点重合),是的切线.设点运动的时间为(秒),当为何值时,是直角三角形,请你求出满足条件的所有值.21.(8分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)画出关于原点对称的;(2)将绕顺时针旋转,画出旋转后得到的,并直接写出此过程中线段扫过图形的面积.(结果保留)22.(10分)某日,深圳高级中学(集团)南北校区初三学生参加东校区下午时的交流活动,南校区学生中午乘坐校车出发,沿正北方向行12公里到达北校区,然后南北校区一同前往东校区(等待时间不计).如图所示,已知东校区在南校区北偏东方向,在北校区北偏东方向.校车行驶状态的平均速度为,途中一共经过30个红绿灯,平均每个红绿灯等待时间为30秒.(1)求北校区到东校区的距离;(2)通过计算,说明南北校区学生能否在前到达东校区.(本题参考数据:,)23.(10分)九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表I)所示:小花708090807090801006080小红908010060908090606090现根据上表数据进行统计得到下表(表Ⅱ):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表I的数据完成表Ⅱ中所缺的数据;(2)老师计算了小红的方差请你计算小华的方差并说明哪名学生的成绩较为稳定.24.(10分)已知抛物线y=-x2+bx+c与直线y=-4x+m相交于第一象限内不同的两点A(5,n),B(3,9),求此抛物线的解析式.25.(12分)如图,某数学兴趣小组为测量一棵古树BH和教学楼的高,先在点处用高1.5米的测角仪测得古树顶端点的仰角为,此时教学楼顶端点恰好在视线上,再向前走7米到达点处,又测得教学楼顶端点的仰角为,点、、点在同一水平线上.(1)计算古树的高度;(2)计算教学楼的高度.(结果精确到0.1米,参考数据:,).26.如图,中,,,为内部一点,且.(1)求证:;(2)求证:;(3)若点到三角形的边,,的距离分别为,,,求证.

参考答案一、选择题(每题4分,共48分)1、C【分析】①根据弦的定义即可判断;

②根据圆的定义即可判断;

③根据垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧即可判断;

④确定圆的条件:不在同一直线上的三点确定一个圆即可判断;

⑤根据切线的性质:经过圆心且垂直于切线的直线必经过切点即可判断.【详解】解:①直径是特殊的弦.所以①正确,不符合题意;

②经过圆心可以作无数条直径.所以②不正确,符合题意;

③平分弦(不是直径)的直径垂直于弦.所以③不正确,符合题意;

④过不在同一条直线上的三点可以作一个圆.所以④不正确,符合题意;

⑤过圆心且垂直于切线的直线必过切点.所以⑤正确,不符合题意.

故选:C.【点睛】本题考查了切线的性质、垂径定理、确定圆的条件,解决本题的关键是掌握圆的相关定义和性质.2、D【解析】二次函数y=x1+4x+3=(x+1)1-1,将其向右平移1个单位,再向上平移1个单位得到二次函数y=x1.故选D.点睛:抛物线的平移时解析式的变化规律:左加右减,上加下减.3、D【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【详解】解:如图,作MH⊥x轴于H.∵M(,2),∴OH=,MH=2,∴OM==3,∴cosα=,故选:D.【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、C【分析】把a=1,b=-1,c=3代入△=b2-4ac进行计算,然后根据计算结果判断方程根的情况.【详解】∵a=1,b=-1,c=3,∴△=b2-4ac=(-1)2-4×1×3=-11<0,所以方程没有实数根.故选C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5、C【分析】根据相反数的定义选择即可.【详解】2020的相反数是-2020,故选C.【点睛】本题考查相反数的定义,注意区别倒数,绝对值,负倒数等知识,掌握概念是关键.6、B【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴=,∠CDE=∠CAB=∠D′=60°∴=,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC=,∠ABC=30°,∴AB=2AC=2,BC=AC=,∵DE∥AB,∴=,∴=,∴CE=,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=∴E′H=CE′=,CH=HE′=,∴BH===∴BE′=HE′+BH=3,故选:B.【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.7、D【解析】根据平行四边形对角相等,邻角互补即可求解.【详解】解:在▱ABCD中,∠A=∠C,∠A+∠D=180°,∵∠A+∠C=130°,∴∠A=∠C=65°,∴∠D=115°,故选D.【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键.8、B【分析】根据平行四边形的性质可得出AB=CD,,得出,再利用相似三角形的性质得出对应线段成比例,即,从而可得解.【详解】解:四边形是平行四边形,,,,且,,故选:.【点睛】本题考查的知识点有平行四边形的性质,相似三角形的性质,综合运用各知识点能够更好的解决问题.9、C【分析】根据相似多边形的性质逐一进行判断即可得答案.【详解】由题意得,A.菱形四条边均相等,所以对应边成比例,对应边平行,所以角也相等,所以两个菱形相似,B.等边三角形对应角相等,对应边成比例,所以两个等边三角形相似;C.矩形四个角相等,但对应边不一定成比例,所以B中矩形不是相似多边形D.正方形四条边均相等,所以对应边成比例,四个角也相等,所以两个正方形相似;故选C.【点睛】本题考查相似多边形的判定,其对应角相等,对应边成比例.两个条件缺一不可.10、C【分析】首先依次判断每个几何体的主视图,然后即可得到答案.【详解】解:A、主视图是矩形,B、主视图是三角形,C、主视图为圆,D、主视图是正方形,故选:C.【点睛】本题考查了简单几何体的三视图,熟知这些简单几何体的三视图是解决此类问题的关键.11、D【详解】解:由题意得:,,,∴△===,解得:,故选D.【点睛】本题考查一元二次方程根的判别式,熟记公式正确计算是本题的解题关键.12、C【解析】①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,②设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和S△ABE,再通过比较大小就可以得出结论.【详解】①四边形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正确).②设BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).③当∠DAF=15°时,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正确).综上所述,正确的有①③④,故选C.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(每题4分,共24分)13、50°或210°【分析】首先根据题意作图,然后由∠BAC′=130°,∠BAC=80°,即可求得答案.【详解】解:∵∠BAC′=130°,∠BAC=80°,

∴如图1,∠CAC′=∠BAC′-∠BAC=50°,

如图2,∠CAC′=∠BAC′+∠BAC=210°.

∴旋转角等于50°或210°.

故答案为:50°或210°.【点睛】本题考查了旋转的性质.注意掌握数形结合思想与分类讨论思想的应用.14、1【分析】过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,由旋转的性质可知△CDF≌△EDG,从而有CF=EG,由△ADE的面积可求EG,得出CF的长,由矩形的性质得BF=AD,根据BC=BF+CF求解.【详解】解:过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,由旋转的性质可知CD=ED,∵∠EDG+∠CDG=∠CDG+∠FDC=90°,∴∠EDG=∠FDC,又∠DFC=∠G=90°,∴△CDF≌△EDG,∴CF=EG,∵S△ADE=AD×EG=3,AD=2,∴EG=3,则CF=EG=3,依题意得四边形ABFD为矩形,∴BF=AD=2,∴BC=BF+CF=2+3=1.故答案为1.15、乙【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16、80π【分析】首先根据勾股定理求得圆锥的底面半径,从而得到底面周长,然后利用扇形的面积公式即可求解.【详解】解:圆锥的底面半径是:=8,圆锥的底面周长是:2×8π=16π,

则×16π×10=80π.故答案为:80π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17、【分析】先根据是方程的解求出的值,再进行计算即可得到答案.【详解】解:∵是方程的解,∴,∴,∴,∴,故答案为:.【点睛】本题主要考查了一元二次方程的解,解题时,逆用一元二次方程的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.18、【详解】试题分析:∵正方形ABCD是轴对称图形,AC是一条对称轴∴点F关于AC的对称点在线段AD上,设为点G,连结EG与AC交于点P,则PF+PE的最小值为EG的长∵AB=4,AF=2,∴AG=AF=2∴EG=考点:轴对称图形三、解答题(共78分)19、(1);(2)①;②方方不能在当天点分前到达地.【分析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;

(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;

②8点至11点30分时间长为小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.【详解】解:(1),且全程速度限定为不超过120千米/时,关于的函数表达式为:.(2)①点至点分时间长为小时,点至点时间长为小时将代入得;将代入得,小汽车行驶速度的范围为:.②方方不能在当天点分前到达地.理由如下:点至点分时间长为小时,将代入中,得千米/时,超速了.所以方方不能在当天点分前到达地.【点睛】本题是反比例函数在行程问题中的应用,根据时间速度和路程的关系可以求解,本题属于中档题.20、(1)①见解析;②;(2).【分析】(1)①作半径的垂直平分线与圆交于,再取,则即为正三角形;②连接,设半径为,利用勾股定理即可求得答案;(2)分当,且点在点左侧或右侧,时四种情况讨论,当时,在Rt中利用勾股定理求解即可;当且点在点左侧或右侧时,构造矩形和直角三角形,利用解直角三角形即可求解;当时,构造正方形和直角三角形即可求解.【详解】(1)①等边如图所示;②连接,如图,设半径为,由作图知:,⊥,∴,在中,,即,解得:;(2)当时,连接,如图,∵QG是的切线,∴,∵,∴三点共线,又∵DF是的切线,∴,设点运动的时间为(秒),∴,在中,,,∴,在Rt中,,,,∴,即,解得:;当,且点在点左侧时,连接,过点G作GM⊥OD于M,如图,∵是的切线,∴,∴四边形DFGM为矩形,∴,在Rt中,,,∴,∵,∴,∵QG是的切线,四边形DFGM为矩形,∴,∴在Rt中,,,∴即解得:;当时,连接,如图,∵是的切线,QG是的切线,∴,,∴四边形ODQG为正方形,∴,∴;当,且点在点左侧时,连接,过点O作ON⊥于N,如图,∵是的切线,∴,∴四边形DFNO为矩形,∴,在Rt中,,,∴,∵,∴,∴,,∴,∵QG是的切线,,∴,∴,∴,∴;综上:当、、、时,是直角三角形.【点睛】本题考查了圆的综合题,涉及到的知识有:简单作图,勾股定理,切线的性质,矩形的判定和性质,正方形的判定和性质,解直角三角形,构造合适的辅助线是解题的关键.21、(1)如图所示,见解析;(2)【分析】(1)利用画中心对称图形的作图方法直接画出关于原点对称的即可;(2)利用画旋转图形的作图方法直接画出,并利用扇形公式求出线段扫过图形的面积.【详解】解:(1)如图所示(2)作图见图;由题意可知线段扫过图形的面积为扇形利用扇形公式:.【点睛】本题考查中心对称图形以及旋转图形的作图,熟练掌握相关作图技巧以及利用扇形公式是解题关键.22、(1);(2)能.【分析】(1)过点作于点,然后在两个直角三角形中通过三角函数分别计算出AE、AC即可;(2)算出总路程求出汽车行驶的时间,加上等红绿灯的时间即为总时间,即可作出判断.【详解】解:(1)过点作于点.依题意有:,,,则,∵,∴,∴(2)总用时为:分钟分钟,∴能规定时间前到达.【点睛】本题考查了三角函数的应用,把非直角三角形的问题通过作辅助线化为直角三角形的问题是解题关键.23、(1)见解析;(2)小华的方差是120,小华成绩稳定.【分析】(1)由表格可知,小华10次数学测试中,得60分的1次,得70分的2次,得1分的4次,得90分的2次,得100分的1次,根据加权平均数的公式计算小华的平均成绩,将小红10次数学测试的成绩从小到大排列,可求出中位数,根据李华的10个数据里的各数出现的次数,可求出测试成绩的众数;

(2)先根据方差公式分别求出两位同学10次数学测试成绩的方差,再比较大小,其中较小者成绩较为稳定.【详解】(1)解:(1)小华的平均成绩为:(60×1+70×2+1×4+90×2+100×1)=1,

将小红10次数学测试的成绩从小到大排列为:60,60,60,1,1,90,90,90,90,100,第五个与第六个数据为1,90,所以中位数为=85,

小华的10个数据里1分出现了4次,次数最多,所以测试成绩的众数为1.

填表如下:姓

名平均成绩中位数众数小华11小红85(2)小华同学成绩的方差:S2=[102+02+102+02+102+102+02+202+202+02]

=(100+100+100+100+400+400)

=120,

小红同学成绩的方差为200,

∵120<200,

∴小华同学的成绩较为稳定.【点睛】本题考查平均数、中位数、众数、方差的意义.一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论