湖北省云梦县2025届九上数学期末监测试题含解析_第1页
湖北省云梦县2025届九上数学期末监测试题含解析_第2页
湖北省云梦县2025届九上数学期末监测试题含解析_第3页
湖北省云梦县2025届九上数学期末监测试题含解析_第4页
湖北省云梦县2025届九上数学期末监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省云梦县2025届九上数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列方程是一元二次方程的是()A. B.x2=0 C.x2-2y=1 D.2.如图,矩形的边在x轴上,在轴上,点,把矩形绕点逆时针旋转,使点恰好落在边上的处,则点的对应点的坐标为()A. B. C. D.3.下列说法正确的是()A.对应边都成比例的多边形相似 B.对应角都相等的多边形相似C.边数相同的正多边形相似 D.矩形都相似4.下列函数是二次函数的是().A.y=2x B.y=+xC.y=x+5 D.y=(x+1)(x﹣3)5.方程(x+1)2=4的解是()A.x1=﹣3,x2=3 B.x1=﹣3,x2=1 C.x1=﹣1,x2=1 D.x1=1,x2=36.如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为()A.2 B. C. D.7.如图,在中,,,则的值是()A. B.1 C. D.8.如图,把正三角形绕着它的中心顺时针旋转60°后,是()A. B. C. D.9.在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则布袋中白色球的个数可能是()A.24 B.18 C.16 D.610.如图,在扇形纸片AOB中,OA=10,ÐAOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为()A.12π B.11π C.10π D.10π+5二、填空题(每小题3分,共24分)11.抛物线的部分图象如图所示,对称轴是直线,则关于的一元二次方程的解为____.12.若方程x2﹣2x﹣1009=0有一个根是α,则2α2﹣4α+1的值为_____.13.若关于x的一元二次方程有两个相等的实数根,则m的值为_________.14.已知p,q都是正整数,方程7x2﹣px+2009q=0的两个根都是质数,则p+q=_____.15.如图,已知PA,PB是⊙O的两条切线,A,B为切点.C是⊙O上一个动点.且不与A,B重合.若∠PAC=α,∠ABC=β,则α与β的关系是_______.16.如图,在Rt△ABC中,∠ABC=90°,AB=1,BC=,将△ABC绕点顶C顺时针旋转60°,得到△MNC,连接BM,则BM的长是_____.17.已知为锐角,且,那么等于_____________.18.________.三、解答题(共66分)19.(10分)己知:如图,抛物线与坐标轴分别交于点,点是线段上方抛物线上的一个动点,(1)求抛物线解析式:(2)当点运动到什么位置时,的面积最大?20.(6分)已知反比例函数的图象与一次函数的图象相交于点(2,1).(1)分别求出这两个函数的解析式;(2)试判断点P(-1,5)关于x轴的对称点P'是否在一次函数图象上.21.(6分)用适当的方法解下列一元二次方程(1)x2+2x=3;(2)2x2﹣6x+3=1.22.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球1个,若从中随机摸出一个球,这个球是白球的概率为(1)求袋子中白球的个数(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,请用画树状图或列表的方法,求两次都摸到白球的概率.23.(8分)画出抛物线y=﹣(x﹣1)2+5的图象(要求列表,描点),回答下列问题:(1)写出它的开口方向,对称轴和顶点坐标;(2)当y随x的增大而增大时,写出x的取值范围;(3)若抛物线与x轴的左交点(x1,0)满足n≤x1≤n+1,(n为整数),试写出n的值.24.(8分)如图,抛物线过点,交x轴于A,B两点点A在点B的左侧.求抛物线的解析式,并写出顶点M的坐标;连接OC,CM,求的值;若点P在抛物线的对称轴上,连接BP,CP,BM,当时,求点P的坐标.25.(10分)如图,中,,是的中点,于.(1)求证:;(2)当时,求的度数.26.(10分)解方程:5x(x+1)=2(x+1)

参考答案一、选择题(每小题3分,共30分)1、B【解析】利用一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,可求解.【详解】解:A:,化简后是:,不符合一元二次方程的定义,所以不是一元二次方程;

B:x2=0,是一元二次方程;

C:x2-2y=1含有两个未知数,不符合一元二次方程的定义,所以不是一元二次方程;

D:,分母含有未知数,是一元一次方程,所以不是一元二次方程;

故选:B.【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2、A【分析】作辅助线证明△∽△ON,列出比例式求出ON=,N=即可解题.【详解】解:过点作⊥x轴于M,过点作⊥x轴于N,由旋转可得,△∽△ON,∵OC=6,OA=10,∴ON::O=:OM:O=3:4:5,∴ON=,N=,∴的坐标为,故选A.【点睛】本题考查了相似三角形的性质,中等难度,做辅助线证明三角形相似是解题关键.3、C【解析】试题分析:根据相似图形的定义,对选项一一分析,排除错误答案.解:A、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误;B、对应角都相等的多边形,属于形状不唯一确定的图形,故错误;C、边数相同的正多边形,形状相同,但大小不一定相同,故正确;D、矩形属于形状不唯一确定的图形,故错误.故选C.考点:相似图形.点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.4、D【分析】直接利用二次函数的定义进而分析得出答案.【详解】解:A、y=2x,是一次函数,故此选项错误;B、y=+x,不是整式,故此选项错误;C、y=x+5,是一次函数,故此选项错误;D、y=(x+1)(x﹣3),是二次函数,故此选项正确.故选D.【点睛】此题主要考查了二次函数的定义,正确把握函数的定义是解题关键.5、B【解析】利用直接开平方的方法解一元二次方程得出答案.【详解】(x+1)2=4则x+1=±2,解得:x1=−1-2=-3,x2=−1+2=1.故选B.【点睛】此题主要考查了直接开平方法解方程,正确开平方是解题关键.6、B【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P作x轴的垂线,交x轴于点A,

∵P(2,4),

∴OA=2,AP=4,.

∴∴.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.7、A【分析】利用相似三角形的性质:相似三角形的面积比等于相似比的平方得到,即可解决问题.【详解】∵,∴,∴,∴,故选:A.【点睛】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.8、A【分析】根据旋转的性质判断即可.【详解】解:∵把正三角形绕着它的中心顺时针旋转60°,∴图形A符合题意,故选:A.【点睛】本题考查的是图形的旋转,和学生的空间想象能力,熟练掌握旋转的性质是解题的关键.9、C【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.【详解】∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1−15%−45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:C.【点睛】大量反复试验下频率稳定值即概率.关键是算出摸到白球的频率.10、A【分析】点O所经过的路线是三段弧,一段是以点B为圆心,10为半径,圆心角为90°的弧,另一段是一条线段,和弧AB一样长的线段,最后一段是以点A为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】由题意得点O所经过的路线长=90π×10故选A.【点睛】解题的关键是熟练掌握弧长公式:,注意在使用公式时度不带单位.二、填空题(每小题3分,共24分)11、【分析】根据二次函数的性质和函数的图象,可以得到该函数图象与轴的另一个交点,从而可以得到一元二次方程的解,本题得以解决.【详解】由图象可得,

抛物线与x轴的一个交点为(1,0),对称轴是直线,

则抛物线与轴的另一个交点为(-3,0),

即当时,,此时方程的解是,

故答案为:.【点睛】本题考查了抛物线与轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.12、1【分析】先利用一元二次方程根的定义得到α2﹣2α=1009,然后求出2α2﹣4α的值代入即可.【详解】解:方程x2﹣2x﹣1009=0有一个根是α,则α2﹣2α﹣1009=0,α2﹣2α=1009,2α2﹣4α+1=2(α2﹣2α)+1=1.故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13、0【分析】根据一元二次方程根的判别式的正负判断即可.【详解】解:原方程可变形为,由题意可得所以故答案为:0【点睛】本题考查了一元二次方程,掌握根的判别式与一元二次方程的根的情况是解题的关键.14、337【分析】利用一元二次方程根与系数的关系,得出有关p,q的式子,再利用两个根都是质数,可分析得出结果.【详解】解:x1+x2=,x1x2==287q=7×41×q,x1和x2都是质数,则只有x1和x2是7和41,而q=1,所以7+41=,p=336,所以p+q=337,故答案为:337.【点睛】此题考查了一元二次方程根与系数的关系以及质数的概念,题目比较典型.15、或【分析】分点C在优弧AB上和劣弧AB上两种情况讨论,根据切线的性质得到∠OAC的度数,再根据圆周角定理得到∠AOC的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C在优弧AB上时,如图,连接OA、OB、OC,∵PA是⊙O的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴;当点C在劣弧AB上时,如图,∵PA是⊙O的切线,∴∠PAO=90°,∴∠OAC=90°-α=∠OCA,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴.综上:α与β的关系是或.故答案为:或.【点睛】本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.16、【分析】由旋转的性质得:CA=CM,∠ACM=60°,由三角比可以求出∠ACB=30°,从而∠BCM=90°,然后根据勾股定理求解即可.【详解】解:由旋转的性质得:CA=CM,∠ACM=60°,∵∠ABC=90°,AB=1,BC=,∴tan∠ACB=,CM=AC=,∴∠ACB=30°,∴∠BCM=90°,∴BM==.故答案为:.【点睛】本题考查了图形的变换-旋转,锐角三角函数,以及勾股定理等知识,准确把握旋转的性质是解题的关键.17、【分析】根据特殊角的三角函数值即可求出答案.【详解】故答案为:.【点睛】本题主要考查特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.18、【分析】先求特殊角的三角函数值再计算即可.【详解】解:原式=×=.

故答案为.【点睛】本题考查的是特殊角的三角函数值,属较简单题目.三、解答题(共66分)19、(1);(2)点运动到坐标为,面积最大.【分析】(1)用待定系数法即可求抛物线解析式.

(2)设点P横坐标为t,过点P作PF∥y轴交AB于点F,求直线AB解析式,即能用t表示点F坐标,进而表示PF的长.把△PAB分成△PAF与△PBF求面积和,即得到△PAB面积与t的函数关系,配方即得到t为何值时,△PAB面积最大,进而求得此时点P坐标.【详解】解:(1)抛物线过点,,解这个方程组,得,抛物线解析式为.(2)如图1,过点作轴于点,交于点.时,,.直线解析式为.点在线段上方抛物线上,设...=点运动到坐标为,面积最大.【点睛】本题考查了二次函数的图象与性质,利用二次函数求三角形面积的最大值,关键在于把原三角形分割成有一边平行于y轴的两个三角形面积之和.20、(1),;(1)P'在一次函数图象上.【分析】(1)把点的坐标代入反比例函数和一次函数的一般式即可求出函数解析式.

(1)首先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,求出点P(-1,5)关于x轴的对称点P′的坐标,再代入一次函数解析式,看看是否满足解析式,满足则在一次函数y=kx+m的图象上,反之则不在.【详解】解:(1)∵经过点(1,1),∴k=1.∵一次函数的图象经过(1,1),∴1=1×1+m∴m=-3,∴反比例函数解析式为,一次函数解析式为.(1)∵P(-1,5)关于x轴的对称点P'坐标为(-1,-5),∴把x=-1代入,得:y=-5,∴P'在一次函数图象上.【点睛】此题主要考查了待定系数法求反比例函数解析式以及待定系数法求一次函数解析式,关键是把握住凡是图象经过的点都能满足解析式.21、(1)x1=﹣3,x2=1;(2)【分析】(1)移项,方程左边分解因式后,利用两数相乘积为1,两因式中至少有一个为1转化为两个一元一次方程来求解;(2)方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,开方即可求出解.【详解】解:(1)移项得:x2+2x﹣3=1,分解因式得:(x+3)(x﹣1)=1,可得x+3=1或x﹣1=1,解得:x1=﹣3,x2=1;(2)方程变形得:x2﹣3x=﹣,配方得:x2﹣3x+=﹣+,即(x﹣)2=,解得:.【点睛】此题考查了解一元二次方程因式分解法及配方法,熟练掌握各种解法是解本题的关键.22、(1)袋子中白球有2个;(2)(两次都摸到白球)【分析】(1)设袋子中白球有个,根据摸出白球的概率=白球的个数÷红、白球的总数,列出方程即可求出白球的个数;(2)根据题意,列出表格,然后根据表格和概率公式求概率即可.【详解】解:(1)设袋子中白球有个,则,解得,经检验是该方程的解,答:袋子中白球有2个.(2)列表如下:红白1白2红(红,红)(红,白1)(红,白2)白1(白1,红)(白1,白1)(白1,白2)白2(白2,红)(白2,白1)(白2,白2)由上表可知,总共有9种等可能结果,其中两次都摸到白球的有4种,所以(两次都摸到白球)【点睛】此题考查的是根据概率求白球的数量和求概率问题,掌握列表法和概率公式是解决此题的关键.23、列表画图见解析;(1)开口向上,对称轴是直线x=1,顶点坐标为(1,5);(2)x<1;(1)n=﹣1【分析】根据二次函数图象的画法,先列表,然后描点、连线即可画出该抛物线的图象;(1)根据画出的抛物线的图象,可以写出它的开口方向,对称轴和顶点坐标;(2)根据函数图象,可以写出当y随x的增大而增大时,x的取值范围;(1)令y=0求出相应的x的值,即可得到x1的值,然后根据n≤x1≤n+1,(n为整数),即可得到n的值.【详解】解:列表:描点、连线(1)由图象可知,该抛物线开口向上,对称轴是直线x=1,顶点坐标为(1,5);(2)由图象可知,当y随x的增大而增大时,x的取值范围是x<1;(1)当y=0时,0=﹣(x﹣1)2+5,解得,,,则该抛物线与x轴的左交点为(+1,0),∵﹣1<+1<﹣2,n≤x1≤n+1,(n为整数),∴n=﹣1.【点睛】本题考查抛物线与x轴的交点、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论