版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古赤峰市名校2025届九上数学期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,中,,于,平分,且于,与相交于点,于,交于,下列结论:①;②;③;④.其中正确的是()A.①② B.①③ C.①②③ D.①②③④2.随着国民经济快速发展,我国涌现出一批规模大、效益高的企业,如大疆、国家核电、华为、凤凰光学等,以上四个企业的标志是中心对称图形的是()A. B. C. D.3.下列图形中,是中心对称图形的是()A. B. C. D.4.下列所给图形是中心对称图形但不是轴对称图形的是()A. B. C. D.5.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n=-2m B.n=- C.n=-4m D.n=-6.下列标志中既是轴对称图形又是中心对称图形的是()A. B.C. D.7.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是()A.y=2(x+1)2+3 B.y=2(x-1)2-3C.y=2(x+1)2-3 D.y=2(x-1)2+38.在阳光的照射下,一块三角板的投影不会是()A.线段 B.与原三角形全等的三角形C.变形的三角形 D.点9.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=6,DB=3,则的值为()A. B. C. D.210.如图,AB是⊙的直径,AC是⊙的切线,A为切点,BC与⊙交于点D,连结OD.若,则∠AOD的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.建国70周年阅兵式中,三军女兵方队共352人,其中领队2人,方队中,每排的人数比排数多11,则女兵方队共有____________排,每排有__________人.12.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为_______.13.在中,,点在直线上,,点为边的中点,连接,射线交于点,则的值为________.14.关于的一元二次方程有实数根,则满足___________.15.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.16.将方程化为一元二次方程的一般形式,其中二次项系数为1,则一次项系数、常数项分别为____.17.如图,圆是一个油罐的截面图,已知圆的直径为5,油的最大深度(),则油面宽度为__________.18.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.三、解答题(共66分)19.(10分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.20.(6分)如图,每个小正方形的边长为个单位长度,请作出关于原点对称的,并写出点的坐标.21.(6分)在⊙O中,AB为直径,C为⊙O上一点.(1)如图1,过点C作⊙O的切线,与AB延长线相交于点P,若∠CAB=27°,求∠P的度数;(2)如图2,D为弧AB上一点,OD⊥AC,垂足为E,连接DC并延长,与AB的延长线交于点P,若∠CAB=10°,求∠P的大小.22.(8分)如图,在△ABC中,点O在边AC上,⊙O与△ABC的边BC,AB分别相切于C,D两点,与边AC交于E点,弦CF与AB平行,与DO的延长线交于M点.(1)求证:点M是CF的中点;(2)若E是的中点,BC=a,①求的弧长;②求的值.23.(8分)利川市南门大桥是上世纪90年代修建的一座石拱桥,其主桥孔的横截面是一条抛物线的一部分,2019年在维修时,施工队测得主桥孔最高点到水平线的高度为.宽度为.如图所示,现以点为原点,所在直线为轴建立平面直角坐标系.(1)直接写出点及抛物线顶点的坐标;(2)求出这条抛物线的函数解析式;(3)施工队计划在主桥孔内搭建矩形“脚手架”,使点在抛物线上,点在水平线上,为了筹备材料,需求出“脚手架”三根钢管的长度之和的最大值是多少?请你帮施工队计算.24.(8分)已知△ABC为等边三角形,M为三角形外任意一点,把△ABM绕着点A按逆时针方向旋转60°到△CAN的位置.(1)如图①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度数和求AM的长.(2)如图②,若∠BMC=n°,试写出AM、BM、CM之间的数量关系,并证明你的猜想.25.(10分)已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.26.(10分)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(-3,0),与y轴交于点B(0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠PA′O=90◦.求点C的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF;连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG;在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.2、B【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此依次判断即可.【详解】∵在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,∴A、C、D不符合,不是中心对称图形,B选项为中心对称图形.故选:B.【点睛】本题主要考查了中心对称图形的定义,熟练掌握相关概念是解题关键.3、D【分析】根据中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,逐一判断即可.【详解】解:A选项不是中心对称图形,故本选项不符合题意;B选项不是中心对称图形,故本选项不符合题意;C选项不是中心对称图形,故本选项不符合题意;D选项是中心对称图形,故本选项符合题意;故选D.【点睛】此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.4、D【解析】A.此图形不是中心对称图形,不是轴对称图形,故A选项错误;B.此图形是中心对称图形,也是轴对称图形,故B选项错误;C.此图形不是中心对称图形,是轴对称图形,故D选项错误.D.此图形是中心对称图形,不是轴对称图形,故C选项正确;故选D.5、B【解析】试题分析:首先根据点C的坐标为(m,n),分别求出点A为(,n),点B的坐标为(-,-n),根据图像知B、C的横坐标相同,可得-=m.故选B点睛:此题主要考查了反比例函数的图像上的点的坐标特点,解答此题的关键是要明确:①图像上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在坐标系的图像上任取一点,过这个点向x轴、y轴分别作垂线.与坐标轴围成的矩形的面积是一个定值|k|.6、C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故错误;
B、不是轴对称图形,也不是中心对称图形.故错误;
C、是轴对称图形,也是中心对称图形.故正确;
D、是轴对称图形,不是中心对称图形.故错误.
故选:C.【点睛】本题考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、A【分析】抛物线平移不改变a的值.【详解】原抛物线的顶点为(0,0),向左平移1个单位,再向上平移1个单位,那么新抛物线的顶点为(-1,1).可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.
故选:A.8、D【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.9、A【分析】先求出AB,由平行线分线段成比例定理得出比例式,即可得出结果.【详解】∵,
∴,
∵,
∴;
故选:A.【点睛】本题考查了平行线分线段成比例定理;熟记平行线分线段成比例定理是解决问题的关键.10、C【分析】由AC是⊙的切线可得∠CAB=,又由,可得∠ABC=40;再由OD=OB,则∠BDO=40最后由∠AOD=∠OBD+∠OBD计算即可.【详解】解:∵AC是⊙的切线∴∠CAB=,又∵∴∠ABC=-=40又∵OD=OB∴∠BDO=∠ABC=40又∵∠AOD=∠OBD+∠OBD∴∠AOD=40+40=80故答案为C.【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.二、填空题(每小题3分,共24分)11、14;1【分析】先设三军女兵方队共有排,则每排有()人,根据三军女兵方队共352人可列方程求解即可.【详解】设三军女兵方队共有排,则每排有()人,根据题意得:
,
整理,得.
解得:(不合题意,舍去),
则(人).
故答案为:14,1.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.12、(-1010,10102)【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【详解】∵A点坐标为(1,1),
∴直线OA为y=x,A1(-1,1),
∵A1A2∥OA,
∴直线A1A2为y=x+2,
解得或,
∴A2(2,4),
∴A3(-2,4),
∵A3A4∥OA,
∴直线A3A4为y=x+6,
解得或,
∴A4(3,9),
∴A5(-3,9)
…,
∴A2019(-1010,10102),
故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.13、或【分析】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.利用平行线分线段成比例定理解答即可.【详解】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.∵DH∥CE,∴.设BH=x,则HE=3x,∴BE=4x.∵E是AB的中点,∴AE=BE=4x.∵EM∥HD,∴.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.∵DC=3DB,∴BC=2DB.∵BH∥CE,∴.设DH=x,则HM=2x.∵E是AB的中点,EM∥BH,∴,∴AM=MH=2x,∴.综上所述:的值为或.故答案为:或.【点睛】本题考查了平行线分线段成比例定理.掌握辅助线的作法是解答本题的关键.14、且【分析】根据根的判别式和一元二次方程的定义即可求解.【详解】根据题意有,解得且故答案为且【点睛】本题主要考查根的判别式和一元二次方程的定义,掌握根的判别式和一元二次方程的定义是解题的关键.15、y=-5(x+2)2-1【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移1个单位长度,
∴新抛物线顶点坐标为(-2,-1),
∴所得到的新的抛物线的解析式为y=-5(x+2)2-1.
故答案为:y=-5(x+2)2-1.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.16、5,.【分析】一元二次方程化为一般形式后,找出一次项系数与常数项即可.【详解】解:方程整理得:,则一次项系数、常数项分别为5,;故答案为:5,.【点睛】此题考查了一元二次方程的一般形式,其一般形式为.17、1【分析】连接OA,先求出OA和OD,再根据勾股定理和垂径定理即可求出AD和AB.【详解】解:连接OA∵圆的直径为5,油的最大深度∴OA=OC=∴OD=CD-OC=∵根据勾股定理可得:AD=∴AB=2AD=1m故答案为:1.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.18、【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率).三、解答题(共66分)19、(1)证明见解析;(2)AD=2.【解析】(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.【详解】(1)如图,连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.20、画图见解析;点的坐标为.【分析】由题意根据平面直角坐标系中,关于原点对称的两个点的坐标特点是横坐标,纵坐标都互为相反数,根据点的坐标就确定原图形的顶点的对应点,进而即可作出所求图形.【详解】解:如图:点的坐标为.【点睛】本题考查关于原点对称的知识,关键是掌握关于原点对称的两个点的坐标特点是横坐标,纵坐标都互为相反数,根据点的坐标即可画出对称图形.21、(1)∠P=36°;(2)∠P=30°.【分析】(1)连接OC,首先根据切线的性质得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形两锐角互余即可求得答案;(2)根据E为AC的中点得到OD⊥AC,从而求得∠AOE=90°﹣∠EAO=80°,然后利用圆周角定理求得∠ACD=12∠AOD=40°【详解】解:(1)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(2)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=12∠AOD=40°∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.【点睛】本题考查切线的性质.22、(1)见解析;(2)①πa;②=1.【分析】(1)由切线的性质可得∠ACB=∠ODB=90°,由平行线的性质可得OM⊥CF,由垂径定理可得结论;(2)①由题意可证△BCD是等边三角形,可得∠B=60°,由直角三角形的性质可得AB=2a,AC=a,AD=a,通过证明△ADO∽△ACB,可得,可求DO的长,由弧长公式可求解;②由直角三角形的性质可求AO=a,可得AE的长,即可求解.【详解】证明:(1)∵⊙O与△ABC的边BC,AB分别相切于C,D两点,∴∠ACB=∠ODB=90°,∵CF∥AB,∴∠OMF=∠ODB=90°,∴OM⊥CF,且OM过圆心O,∴点M是CF的中点;(2)①连接CD,DF,OF,∵⊙O与△ABC的边BC,AB分别相切于C,D两点,∴BD=BC,∵E是的中点,∴,∴∠DCE=∠FCE,∵AB∥CF,∴∠A=∠ECF=∠ACD,∴AD=CD,∵∠A+∠B=90°,∠ACD+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,且BD=BC,∴BD=BC=CD,∴△BCD是等边三角形,∴∠B=60°,∴∠A=30°=∠ECF=∠ACD,∴∠DCF=60°,∴∠DOF=120°,∵BC=a,∠A=30°,∴AB=2a,AC=a,∴AD=a,∵∠A=∠A,∠ADO=∠ACB=90°,∴△ADO∽△ACB,∴,∴∴DO=a,∴的弧长==πa;②∵∠A=30°,OD⊥AB,∴AO=2DO=a,∴AE=AO﹣OE=﹣a=a,∴=1.【点睛】本题是相似形综合题,考查了圆的有关性质,等边三角形的判定和性质,直角三角形的性质,相似三角形的判定和性质,弧长公式,灵活运用这些性质进行推理证明是本题的关键.23、(1);(2),;(3)三根钢管的长度之和的最大值是.【分析】(1)根据题意,即可写出点及抛物线顶点的坐标;(2)抛物线过原点,故设抛物线为,将M和P的坐标代入即可求出抛物线的解析式;(3)设,分别用含x的式子表示出的长度,设“脚手架”三根钢管的长度之和为,即可求出与x的函数关系式,最后利用二次函数求最值即可.【详解】解:(1)由题意可知:抛物线顶点;(2)抛物线过原点,故设抛物线为,由在抛物线上有,解得,所以抛物线的函数解析式为,由图象可知;(3)设,根据点A在抛物线上和矩形的性质可得,∵点A和点D关于抛物线的对称轴对称∴点D的坐标为(60-x,y)∴设“脚手架”三根钢管的长度之和为,则,即当时,,所以,三根钢管的长度之和的最大值是.【点睛】此题考查的是二次函数的应用,掌握用待定系数法求二次函数的解析式和利用二次函数求最值是解决此题的关键.24、(1)60°,5;(2)AM=BM+CM【分析】(1)由旋转性质可得△ABM≌△CAN,根据全等三角形的性质和等边三角形的判定可得△AMN是等边三角形,继而求出∠AMN=60°,根据∠BMC=120°,∠AMN=∠AMC=60°,继而求出∠AMB;AM=MN=MC+CN.(2)【详解】解∵把△ABM绕着点A按逆时针方向旋转60到△ACN的位置,所以∠NAM=60°,因为AN=AM,所以△AMN是等边三角形,所以∠AMN=60°,因为∠BMC=120°,∠AMN=∠AMC=60°,所以∠AMB=∠BMG-∠AMG=120°-60°=60°,∵把△ABM绕着点A按逆时针方向旋转60°到△ACN的位置,所以△ABM≌△CAN,所以BM=CN=2,△AMN是等边三角形AM=MN=MC+CN=3+2=5,故答案为60°,5;(2)AM=BM+CM,∵把△ABM绕着点A按逆时针方向旋转60°到△ACN的位置,所以△ABM≌△CAN,因为AN=AM,所以△AMN是等边三角形,所以∠AMN=60°,因为∠BMC=n°,∠AMN=∠AMC=60°,所以∠MNA=∠MAN,所以MA=MN,所以AM
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外研版英语五年级上册教学计划案例
- 外研版九年级英语上册知识点盘点
- 版股东借款协议书
- 借人为媳妇买房名义买房的协议书
- 引产患者出院健康教育
- 粤教沪科版九年级物理上册第十一章机械功与机械能11-3如何提高机械效率第2课时测算滑轮组的机械效率教学课件
- plct字路口课程设计
- 东南西北课程设计
- 人教版九年级物理第二十章电与磁第1节磁现象磁场第2课时磁场教学课件
- 中东铁路研学课程设计
- 大坝防渗墙注水试验报告
- 废旧物资回收总体服务方案
- 不锈钢水箱检验报告模板内部信息可改
- 海康设备错误代码【精选文档】
- 扫描电镜原理和应用.
- 光电效应测定普朗克常数.ppt
- 保密工作台帐
- 奶茶店项目投资可行性分析报告
- 正山小种的特点
- ieee论文投稿模板
- 麦肯锡:如何撰写商业计划书(中文版)商业计划可行性报告
评论
0/150
提交评论