2025届山西省高平市数学九上期末统考模拟试题含解析_第1页
2025届山西省高平市数学九上期末统考模拟试题含解析_第2页
2025届山西省高平市数学九上期末统考模拟试题含解析_第3页
2025届山西省高平市数学九上期末统考模拟试题含解析_第4页
2025届山西省高平市数学九上期末统考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省高平市数学九上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=1.则a+b之值为何?()A.1 B.9 C.16 D.212.小明沿着坡度为1:2的山坡向上走了10m,则他升高了()A.5m

B.2m

C.5m

D.10m3.如图,在平面直角坐标系中,菱形ABCD的顶点A(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上,若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为()A.15 B.20 C.25 D.304.二次函数与一次函数在同一坐标系中的大致图象可能是()A. B.C. D.5.某同学推铅球,铅球出手高度是m,出手后铅球运行高度y(m)与水平距离x(m)之间的函数表达式为,则该同学推铅球的成绩为()A.9m B.10m C.11m D.12m6.如图,反比例函数的图象经过点A(2,1),若≤1,则x的范围为()A.≥1 B.≥2 C.<0或≥2 D.<0或0<≤17.已知二次函数y=x2﹣6x+m(m是实数),当自变量任取x1,x2时,分别与之对应的函数值y1,y2满足y1>y2,则x1,x2应满足的关系式是()A.x1﹣3<x2﹣3 B.x1﹣3>x2﹣3 C.|x1﹣3|<|x2﹣3| D.|x1﹣3|>|x2﹣3|8.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在白色区域的概率等于()A. B. C. D.无法确定9.在△ABC中,∠C=90°,AB=12,sinA=,则BC等于()A. B.4 C.36 D.10.抛物线的对称轴是()A. B. C. D.11.如图,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点B,F的坐标分别为(-4,4),(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(点P在GC上)是位似中心,则点P的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)12.如图,内接于⊙,,,则⊙半径为()A.4 B.6 C.8 D.12二、填空题(每题4分,共24分)13.菱形的两条对角线长分别是6和8,则菱形的边长为_____.14.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是.15.如图,⊙O的内接四边形ABCD中,∠A=110°,则∠BOD等于________°.16.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到白色乒乓球的概率为,那么盒子内白色乒乓球的个数为_____.17.如图,在平面直角坐标系中,菱形的边在轴上,与交于点(4,2),反比例函数的图象经过点.若将菱形向左平移个单位,使点落在该反比例函数图象上,则的值为_____________.18.在△ABC中,∠C=90°,BC=2,,则边AC的长是.三、解答题(共78分)19.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.(1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1;(2)求旋转过程中动点B所经过的路径长(结果保留π).20.(8分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.21.(8分)一个四位数,记千位数字与个位数字之和为,十位数字与百位数字之和为,如果,那么称这个四位数为“对称数”最小的“对称数”为;四位数与之和为最大的“对称数”,则的值为;一个四位的“对称数”,它的百位数字是千位数字的倍,个位数字与十位数字之和为,且千位数字使得不等式组恰有个整数解,求出所有满足条件的“对称数”的值.22.(10分)(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.23.(10分)在边长为1个单位长度的正方形网格中,建立如图所示的平面直角坐标系,的顶点都在格点上,请解答下列问题:(1)作出向左平移4个单位长度后得到的,并写出点的坐标;(2)作出关于原点O对称的,并写出点的坐标;(3)已知关于直线L对称的的顶点的坐标为(-4,-2),请直接写出直线L的函数解析式.24.(10分)如图,在中,,,,求和的长.25.(12分)如图,在平面直角坐标系中,点为坐标原点,每个小方格的边长为个单位长度,在第二象限内有横、纵坐标均为整数的两点,点,点的横坐标为,且.在平面直角坐标系中标出点,写出点的坐标并连接;画出关于点成中心对称的图形.26.在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1、2、3、4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于5的概率(请用画树状图或列表等方法求解).

参考答案一、选择题(每题4分,共48分)1、A【解析】分析:判断出A、C两点坐标,利用待定系数法求出a、b即可;详解:如图,由题意知:A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选A.点睛:本题考查二次函数图形上点的坐标特征,待定系数法等知识,解题的关键是理解题意,判断出A、C两点坐标是解决问题的关键.2、B【详解】解:由题意得:BC:AB=1:2,设BC=x,AB=2x,则AC===x=10,解得:x=2.故选B.3、B【分析】根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.【详解】解:抛物线的对称轴为,∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,

∴点C的横坐标为-1.

∵四边形ABCD为菱形,

∴AB=BC=AD=1,

∴点D的坐标为(-2,0),OA=2.

在Rt△ABC中,AB=1,OA=2,∴OB=,∴S菱形ABCD=AD•OB=1×4=3.

故选:B.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.4、D【分析】由一次函数y=ax+a可知,一次函数的图象与x轴交于点(-1,0),即可排除A、B,然后根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象进行判断.【详解】解:由一次函数可知,一次函数的图象与轴交于点,排除;当时,二次函数开口向上,一次函数经过一、三、四象限,当时,二次函数开口向下,一次函数经过二、三、四象限,排除;故选.【点睛】本题主要考查一次函数和二次函数的图象,解题的关键是熟练掌握二次函数的图象和一次函数的图象与系数之间的关系.5、B【分析】根据铅球出手高度是m,可得点(0,)在抛物线上,代入解析式得a=-,从而求得解析式,当y=0时解一元二次方程求得x的值即可;【详解】解:∵铅球出手高度是m,∴抛物线经过点(0,),代入解析式得:=16a+3,解得a=-,故解析式为:令y=0,得:,解得:x1=-2(舍去),x2=10,

则铅球推出的距离为10m.故选:B.【点睛】本题考查二次函数的实际应用,熟练掌握待定系数法求函数解析式是解题关键.6、C【解析】解:由图像可得,当<0或≥2时,≤1.故选C.7、D【分析】先利用二次函数的性质确定抛物线的对称轴为直线x=3,然后根据离对称轴越远的点对应的函数值越大可得到|x1-3|>|x2-3|.【详解】解:抛物线的对称轴为直线x=-=3,∵y1>y2,

∴点(x1,y1)比点(x2,y2)到直线x=3的距离要大,

∴|x1-3|>|x2-3|.

故选D.【点睛】本题考查二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8、C【分析】根据概率P(A)=事件A可能出现的结果数:所有可能出现的结果数可得答案.【详解】以自由转动的转盘,被分成了6个相同的扇形,白色区域有4个,因此=,故选:C.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的求解方法.9、B【分析】根据正弦的定义列式计算即可.【详解】解:在△ABC中,∠C=90°,sinA=,∴=,解得BC=4,故选B.【点睛】本题主要考查了三角函数正弦的定义,熟练掌握定义是解题的关键.10、D【解析】根据二次函数的对称轴公式计算即可,其中a为二次项系数,b为一次项系数.【详解】由二次函数的对称轴公式得:故选:D.【点睛】本题考查了二次函数的对称轴公式,熟记公式是解题关键.11、C【分析】如图连接BF交y轴于P,由BC∥GF可得=,再根据线段的长即可求出GP,PC,即可得出P点坐标.【详解】连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴==,∴GP=1,PC=2,∴点P的坐标为(0,2),故选C.【点睛】此题主要考查位似图形的性质,解题的关键是根据位似图形的对应线段成比例.12、C【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=1,∴△OBC是等边三角形,∴OB=BC=1.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.二、填空题(每题4分,共24分)13、1【分析】根据菱形对角线垂直平分,再利用勾股定理即可求解.【详解】解:因为菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长为=1.故答案为1.【点睛】此题主要考查菱形的边长求解,解题的关键是熟知菱形的性质及勾股定理的运用.14、π﹣1.【详解】解:在Rt△ACB中,AB==,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC==π﹣1.故答案为π﹣1.考点:扇形面积的计算.15、140【解析】试题解析::∵∠A=110°

∴∠C=180°-∠A=70°

∴∠BOD=2∠C=140°.16、1.【分析】设盒子内白色乒乓球的个数为x,根据摸到白色乒乓球的概率为列出关于x的方程,解之可得.【详解】解:设盒子内白色乒乓球的个数为,根据题意,得:,解得:,经检验:是原分式方程的解,∴盒子内白色乒乓球的个数为1,故答案为1.【点睛】此题主要考查了概率公式,关键是掌握随机事件A的概率事件A可能出现的结果数:所有可能出现的结果数.17、1【分析】根据菱形的性质得出CD=AD,BC∥OA,根据D

(4,2)和反比例函数的图象经过点D求出k=8,C点的纵坐标是2×2=4,求出C的坐标,即可得出答案.【详解】∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D

(4,2),反比例函数的图象经过点D,∴k=8,C点的纵坐标是2×2=4,∴,把y=4代入得:x=2,∴n=3−2=1,∴向左平移1个单位长度,反比例函数能过C点,故答案为1.【点睛】本题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,数形结合思想是关键.18、.【详解】解:∵BC=2,∴AB==3∴AC=故答案为:.三、解答题(共78分)19、(1)画图见解析;(2)点B所经过的路径长为.【解析】(1)让三角形的顶点B、C都绕点A逆时针旋转90°后得到对应点,顺次连接即可.

(2)旋转过程中点B所经过的路线是一段弧,根据弧长公式计算即可.【详解】(1)如图.(2)由(1)知这段弧所对的圆心角是90°,半径AB==5,∴点B所经过的路径长为.【点睛】本题主要考查了作旋转变换图形,勾股定理,弧长计算公式,熟练掌握旋转的性质和弧长的计算公式是解答本题的关键.20、(1)答案见解析;(2).【分析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P==.21、(1)1010;7979;(2)【分析】(1)根据最小的“对称数”1001,最大的“对称数”9999即可解答;(2)先解不等式组确定a的值,然后根据a和题意确定B,即可确定M.【详解】解:9999-2020=7979由得,由有四个整数解,得,又为千位数字,所以.设个位数字为,由题意可得,十位数字为,故,.故满足题设条件的为【点睛】本题考查新定义的概念,读懂题意,掌握据数的特点,确定字母a取值范围是解答本题的关键.22、(1);(2)的值不变化,值为,理由见解析;(3)【分析】(1)由平行线分线段成比例定理即可得出答案;(2)证明△ABD∽△ACE,得出==(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,则DM=CN,DN=MC,由三角函数定义得出=,=,得出=,求出AE=AD=,DE=AE=,得出CE=CD﹣DE=,由勾股定理得出AC==,得出BC=AC=,由面积法求出CN=DM=,得出BN=BC+CN=,由勾股定理得出AM==,得出DN=MC=AM+AC=,再由勾股定理即可得出答案.【详解】(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,如图3所示:则四边形DMCN是矩形,∴DM=CN,DN=MC,∵∠BAC=∠ADC=θ,且tanθ=,∴=,=,∴=,∴AE=AD=×3=,DE=AE=,∴CE=CD﹣DE=6﹣=,∴AC===∴BC=AC=,∵△ACD的面积=AC×DM=CD×AE,∴CN=DM==,∴BN=BC+CN=,AM===,∴DN=MC=AM+AC=,∴BD===.【点睛】本题是四边形综合题目,考查了相似三角形的判定与性质、旋转的性质、平行线分线段成比例定理、矩形的判定与性质、勾股定理、三角函数定义、三角形面积等知识;熟练掌握相似三角形的判定与性质和勾股定理是解题的关键.23、(1)图详见解析,C1(-1,2);(2)图详见解析,C2(-3,-2);(3)【分析】(1)利用网格特点和平移的性质写出点A、B、C的对应点A1、B1、C1的坐标,然后描点得到△A1B1C1;(2)根据关于原点中心对称的点的坐标特征写出点A2、B2、C2的坐标,然后描点即可;(3)根据对称的特点解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论