版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.二次函数y=-2(x+1)2+3的图象的顶点坐标是()A.(1,3) B.(-1,3) C.(1,-3) D.(-1,-3)2.已知抛物线与二次函数的图像相同,开口方向相同,且顶点坐标为,它对应的函数表达式为()A. B.C. D.3.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.3 B.-3 C.-1 D.14.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,则∠A的度数为()A.70° B.75° C.60° D.65°5.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.36.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别1234567分值90959088909285这组数据的中位数和众数分别是A.88,90 B.90,90 C.88,95 D.90,957.反比例函数y=图象经过A(1,2),B(n,﹣2)两点,则n=()A.1 B.3 C.﹣1 D.﹣38.已知,则下列比例式成立的是()A. B. C. D.9.某地质学家预测:在未来的20年内,F市发生地震的概率是.以下叙述正确的是()A.从现在起经过13至14年F市将会发生一次地震B.可以确定F市在未来20年内将会发生一次地震C.未来20年内,F市发生地震的可能性比没有发生地震的可能性大D.我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生10.如图,在正方形中,点为边的中点,点在上,,过点作交于点.下列结论:①;②;③;④.正确的是(
).A.①② B.①③ C.①③④ D.③④11.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=17812.如图,中,,顶点,分别在反比例函数()与()的图象上.则下列等式成立的是()A. B. C. D.二、填空题(每题4分,共24分)13.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.14.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是_____.15.已知三角形的两边分别是3和4,第三边的数值是方程x2﹣9x+14=0的根,则这个三角形的周长为_____.16.在中,,,在外有一点,且,则的度数是__________.17.已知函数是反比例函数,则=________.18.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k的值为.三、解答题(共78分)19.(8分)某食品代理商向超市供货,原定供货价为元/件,超市售价为元/件.为打开市场超市决定在第一季度对产品打八折促销,第二季度再回升个百分点,为保证超市利润,代理商承诺在供货价基础上向超市返点试问平均每季度返多少个百分点,半年后超市的销售利润回到开始供货时的水平?20.(8分)已知:如图,,点在射线上.求作:正方形,使线段为正方形的一条边,且点在内部.(请用直尺、圆规作图,不写作法,但要保留作图痕迹)21.(8分)如图一座拱桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m时,桥洞顶部离水面4m.、(1)建立平面直角坐标系,并求该抛物线的函数表达式;(2)若水面上升1m,水面宽度将减少多少?22.(10分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.(1)求证:是的切线;(2)若的半径为2,求图中阴影部分的面积.23.(10分)在中,,点是的中点,连接.(1)如图1,若,求的长度;(2)如图2,过点作于点.求证:.(3)如图2,在(2)的条件下,当时,求的值.24.(10分)已知抛物线y=ax2+bx+c经过点A(﹣2,0),B(3,0),与y轴负半轴交于点C,且OC=OB.(1)求抛物线的解析式;(2)在y轴负半轴上存在一点D,使∠CBD=∠ADC,求点D的坐标;(3)点D关于直线BC的对称点为D′,将抛物线y=ax2+bx+c向下平移h个单位,与线段DD′只有一个交点,直接写出h的取值范围.25.(12分)已知:如图,∠ABC,射线BC上一点D,求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(不写作法,保留作图痕迹)26.如图,平行四边形ABCD的顶点A在y轴上,点B、C在x轴上;OA、OB长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB,BC=6;(1)写出点D的坐标;(2)若点E为x轴上一点,且S△AOE=,①求点E的坐标;②判断△AOE与△AOD是否相似并说明理由;(3)若点M是坐标系内一点,在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解析】分析:据二次函数的顶点式,可直接得出其顶点坐标;解:∵二次函数的解析式为:y=-(x-1)2+3,∴其图象的顶点坐标是:(1,3);故选A.2、D【分析】先根据抛物线与二次函数的图像相同,开口方向相同,确定出二次项系数a的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数的图像相同,开口方向相同,∵顶点坐标为∴抛物线的表达式为故选:D.【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键.3、B【分析】由关于原点对称的两个点的坐标之间的关系直接得出a、b的值即可.【详解】∵点A(1,a)、点B(b,2)关于原点对称,∴a=﹣2,b=﹣1,∴a+b=﹣3.故选B.【点睛】关于原点对称的两个点,它们的横坐标互为相反数,纵坐标也互为相反数.4、B【分析】由旋转的性质知∠AOD=30°,OA=OD,根据等腰三角形的性质及内角和定理可得答案.【详解】由题意得:∠AOD=30°,OA=OD,∴∠A=∠ADO75°.故选B.【点睛】本题考查了旋转的性质,熟练掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等是解题的关键.5、B【解析】过点O作OC⊥AB,垂足为C,则有AC=AB=×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC==5,即点O到AB的距离是5.6、B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,1,1,1,92,95,∴中位数是按从小到大排列后第4个数为:1.众数是在一组数据中,出现次数最多的数据,这组数据中1出现三次,出现的次数最多,故这组数据的众数为1.故选B.7、C【解析】根据反比例函数图象上点的坐标特征得到:k=1×2=-2n,然后解方程即可.【详解】解:∵反比例函数y=图象经过A(1,2),B(n,﹣2)两点,∴k=1×2=﹣2n.解得n=﹣1.故选C.【点睛】本题考查反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.8、C【分析】依据比例的性质,将各选项变形即可得到正确结论.【详解】解:A.由可得,2y=3x,不合题意;B.由可得,2y=3x,不合题意;C.由可得,3y=2x,符合题意;D.由可得,3x=2y,不合题意;故选:C.【点睛】本题主要考查了比例的性质,解决问题的关键是掌握:内项之积等于外项之积.9、C【分析】根据概率的意义,可知发生地震的概率是,说明发生地震的可能性大于不发生地震的可能性,从而可以解答本题.【详解】∵某地质学家预测:在未来的20年内,F市发生地震的概率是,∴未来20年内,F市发生地震的可能性比没有发生地震的可能性大,故选C.【点睛】本题主要考查概率的意义,发生地震的概率是,说明发生地震的可能性大于不发生地政的可能性,这是解答本题的关键.10、C【分析】连接.根据“HL”可证≌,利用全等三角形的对应边相等,可得,据此判断①;根据“”可证≌,可得,从而可得,据此判断②;由(2)知,可证,据此判断③;根据两角分别相等的两个三角形相似,可证∽∽,可得,从而可得,据此判断④.【详解】解:(1)连接.如图所示:
∵四边形ABCD是正方形,
∴∠ADC=90°,
∵FG⊥FC,
∴∠GFC=90°,
在Rt△CFG与Rt△CDG中,∴≌.∴...①正确.(2)由(1),垂直平分.∴∠EDC+∠2=90°,
∵∠1+∠EDC=90°,∴.∵四边形ABCD是正方形,
∴AD=DC=AB,∠DAE=∠CDG=90°,∴≌.∴.∵为边的中点,∴为边的中点.∴.∴②错误.(3)由(2),得.∴.③正确.(4)由(3),可得∽∽.∴∴.∴④正确.故答案为:C.【点睛】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定与性质、三角形中位线定理、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.11、A【分析】设道路的宽度为x米.把道路进行平移,使六块草坪重新组合成一个矩形,根据矩形的面积公式即可列出方程.【详解】解:设横、纵道路的宽为x米,把两条与AB平行的道路平移到左边,另一条与AD平行的道路平移到下边,则六块草坪重新组合成一个矩形,矩形的长、宽分别为(50﹣2x)米、(30﹣x)米,所以列方程得(50﹣2x)×(30﹣x)=178×6,故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,对图形进行适当的平移是解题的关键.12、C【解析】【分析】过A作AF垂直x轴,过B点作BE垂直与x轴,垂足分别为F,E,得出,可得出,再根据反比例函数的性质得出两个三角形的面积,继而得出两个三角形的相似比,再逐项判断即可.【详解】解:过A作AF垂直x轴,过B点作BE垂直与x轴,垂足分别为F,E,由题意可得出,继而可得出顶点,分别在反比例函数()与()的图象上∴∴∴∴A.,此选项错误,B.,此选项错误;C.,此选项正确;D.,此选项错误;故选:C.【点睛】本题考查的知识点是反比例函数的性质以及解直角三角形,解此题的关键是利用反比例函数的性质求出两个三角形的相似比.二、填空题(每题4分,共24分)13、5或1【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【详解】解:设每千克水果应涨价x元,依题意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解这个方程,得x1=5,x2=1.答:每千克水果应涨价5元或1元.故答案为:5或1.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14、(0,3)【分析】要求抛物线与y轴的交点,即令x=0,解方程即可.【详解】解:令x=0,则y=3,即抛物线y=2x2-5x+3与y轴的交点坐标是(0,3).故答案为(0,3).【点睛】本题考查了抛物线与y轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与y轴的交点坐标,令x=0,即可求得交点纵坐标.15、1.【分析】求出方程的解,再看看是否符合三角形三边关系定理即可解答.【详解】∵x2﹣1x+14=0,∴(x﹣2)(x﹣7)=0,则x﹣2=0或x﹣7=0,解得x=2或x=7,当x=2时,三角形的周长为2+3+4=1;当x=7时,3+4=7,不能构成三角形;故答案为:1.【点睛】本题考查解一元二次方程和三角形三边关系定理的应用,解题的关键是确定三角形的第三边.16、、【分析】由,可知A、C、B、M四点共圆,AB为圆的直径,则是弦AC所对的圆周角,此时需要对M点的位置进行分类讨论,点M分别在直线AC的两侧时,根据同弧所对的圆周角相等和圆内接四边形对角互补可得两种结果.【详解】解:∵在中,,,∴∠BAC=∠ACB=45°,∵点在外,且,即∠AMB=90°∵∴A、C、B、M四点共圆,①如图,当点M在直线AC的左侧时,,∴;②如图,当点M在直线AC的右侧时,∵,∴,故答案为:135°或45°.【点睛】本题考查了圆内接四边形对角互补和同弧所对的角相等,但解题的关键是要先根据题意判断出A、C、B、M四点共圆.17、1【分析】根据反比例函数的定义可得|m|-2=-1,m+1≠0,求出m的值即可得答案.【详解】∵函数是反比例函数,∴|m|-2=-1,m+1≠0,解得:m=1.故答案为:1【点睛】考查反比例函数的定义;反比例函数解析式的一般形式y=(k≠0),也可转化为y=kx-1(k≠0)的形式,特别注意不要忽略k≠0这个条件.18、【解析】试题分析:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB=10°.∵OA=OB,∴△AOB是等边三角形.∴OA=OB=AB=1.∴BM=OB•sin∠BOA=1×sin10°=,OM=OB•COS10°=2.∴B的坐标是(2,).∵B在反比例函数位于第一象限的图象上,∴k=2×=.三、解答题(共78分)19、代理商平均每个季度向超市返个百分点,半年后超市的利润回到开始供货时的水平.【分析】设代理商平均每个季度向超市返个百分点,根据题意列出方程,解方程,即可得到答案.【详解】解:设代理商平均每个季度向超市返个百分点,由题意得:,解得:(舍去).∴代理商平均每个季度向超市返个百分点,半年后超市的利润回到开始供货时的水平.【点睛】本题考查了一元二次方程的应用,解题的关键是找到题目的等量关系,列出方程.20、见详解【分析】根据正方形的判定定理,利用尺规先作出FD⊥BC,再作∠ABC的平分线交DF于点F,作∠BDF的平分线交AB于点E,进而即可作出正方形.【详解】如图所示:∴正方形就是所求图形.【点睛】本题主要考查正方形的判定定理和尺规作图,掌握尺规作角平分线和垂线,是解题的关键.21、(1)图见解析,抛物线的函数表达式为(注:因建立的平面直角坐标系的不同而不同);(2)【分析】(1)以AB的中点为平面直角坐标系的原点O,AB所在线为x轴,过点O作AB的垂线为y轴建立平面直角坐标系(图见解析);因此,抛物线的顶点坐标为,可设抛物线的函数表达式为,再将B点的坐标代入即可求解;(2)根据题(1)的结果,令求出x的两个值,从而可得水面上升1m后的水面宽度,再与12m作差即可得出答案.【详解】(1)以AB的中点为平面直角坐标系的原点O,AB所在线为x轴,过点O作AB的垂线为y轴,建立的平面直角坐标系如下:根据所建立的平面直角坐标系可知,B点的坐标为,抛物线的顶点坐标为因此设抛物线的函数表达式为将代入得:解得:则所求的抛物线的函数表达式为(注:因建立的平面直角坐标系的不同而不同);(2)由题意,令得解得:则水面上升1m后的水面宽度为:(米)故水面上升1m,水面宽度将减少米.【点睛】本题考查了二次函数图象的性质,根据建立的平面直角坐标系求出函数的表达式是解题关键.22、(1)见解析(2)图中阴影部分的面积为π.【分析】(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【详解】(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切线;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC==.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD==.∴SRt△OCD=OC×CD=×2×=.∴图中阴影部分的面积为:-.23、(1);(2)见解析;(3).【分析】(1)由等腰直角三角形的性质可得CO=BO=AO,∠AOB=90°,由勾股定理可求解;(2)由等腰直角三角形的性质可得AD=CD,由三角形中位线可得OD=AB;(3)分别计算出OC,BC的长,即可求解.【详解】(1),点是的中点,,,;(2),是等腰直角三角形,∵,,∵,;(3),,,,.【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,勾股定理,三角形中位线定理,灵活运用性质进行推理是本题的关键.24、(1)y=x2﹣x﹣3;(2)D(0,﹣6);(3)3≤h≤1【分析】(1)OC=OB,则点C(0,﹣3),抛物线的表达式为:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,即可求解;(2)CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),即可求解;(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即可求解.【详解】解:(1)OC=OB,则点C(0,﹣3),抛物线的表达式为:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,故抛物线的表达式为:y=x2﹣x﹣3;(2)设CD=m,过点D作DH⊥BC交BC的延长线于点H,则CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),故点D(0,﹣6);(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);平移后抛物线的表达式为:y=x2﹣x﹣3﹣h,当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即﹣3=×9+﹣h,解得:h=1,故3≤h≤1.【点睛】此题主要考查二次函数综合,解题的关键是熟知待定系数法求解析式、三角函数的定义及二次函数平移的特点.25、见解析.【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年煤炭综合采掘机械设备项目提案报告
- 天然气资源分布与储备评估与研究及对策制定报告考核试卷
- 全新个人车辆租赁合同范本3篇
- 天然气市场定价与市场需求趋势考核试卷
- 工程转让合同协议书4
- 二零二四年度电子商务平台物流配送合同:仓储管理与运输服务2篇
- 红薯收购合同协议书
- 心理健康基础定义和重要性考核试卷
- 木材采运中的运输管理考核试卷
- 2024年度服装行业职业技能培训合同2篇
- 铁路信号电缆加芯原则
- 工程新增工程量补充协议怎么写
- 恙虫病患者的护理查房
- 人生四时唐诗九味
- 基模高斯光束光斑半径
- 工业自动化中的智能装配线布局
- 社会心理学研究中的数据分析方法
- 人教版三年级数学上册“双减”作业设计 7.3周长的认识(解析版)
- 曼昆宏观经济学课后习题答案
- 北京市社保培训课件
- 防止生产现场滑倒事故的安全培训
评论
0/150
提交评论