版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省无锡市江阴市长寿中学九上数学期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在一块斜边长60cm的直角三角形木板()上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若CD:CB=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.202.5cm2 B.320cm2 C.400cm2 D.405cm22.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度为()A.1:2 B.1:3 C.1: D.:13.已知,,且的面积为,周长是的周长的,,则边上的高等于()A. B. C. D.4.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10005.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.6.下列所给图形是中心对称图形但不是轴对称图形的是()A. B. C. D.7.如图,在正方形中,点为边的中点,点在上,,过点作交于点.下列结论:①;②;③;④.正确的是(
).A.①② B.①③ C.①③④ D.③④8.下图中,不是中心对称图形的是()A. B. C. D.9.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2 B.k<﹣2 C.k<2 D.k>210.如图所示,某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛,顶层一个,以下各层堆成六边形,逐层每边增加一个花盆,则第七层的花盆的个数是()A.91 B.126 C.127 D.169二、填空题(每小题3分,共24分)11.古希腊时期,人们认为最美人体的肚脐至脚底的长度与身高长度之比是(0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此,若某位女性身高为165cm,肚脐到头顶高度为65cm,则其应穿鞋跟为_____cm的高跟鞋才能使人体近似满足黄金分割比例.(精确到1cm)12.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.13.在中,,,,则的长是__________.14.反比例函数y=﹣的图象与一次函数y=﹣x+5的图象相交,其中一个交点坐标为(a,b),则=_____.15.一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是______.16.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.17.在一个不透明的布袋中装有红色和白色两种颜色的小球(除颜色以外没有任何区别),随机摸出一球,摸到红球的概率是,其中白球6个,则红球有________个.18.我国古代数学著作《增删算法统宗》记载“圆中方形”问题:“今有圆田一段,中间有个方池,丈量田地待耕犁,恰好三分在记,池面至周有数,每边三步无疑,内方圆径若能知,堪作算中第一.”其大意为:有一块圆形的田,中间有一块正方形水池,测量出除水池外圆内可耕地的面积恰好72平方步,从水池边到圆周,每边相距3步远.如果你能求出正方形的边长是x步,则列出的方程是_______________.三、解答题(共66分)19.(10分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A(5,0),B(2,6),点D为AB上一点,且,双曲线y1=(k1>0)在第一象限的图象经过点D,交BC于点E.(1)求双曲线的解析式;(2)一次函数y2=k2x+b经过D、E两点,结合图象,写出不等式<k2x+b的解集.20.(6分)如图,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′,若反比例函数的图像恰好经过A′B的中点D,求这个反比例函数的解析式.21.(6分)如图,在矩形ABCD中,已知AD>AB.在边AD上取点E,连结CE.过点E作EF⊥CE,与边AB的延长线交于点F.(1)求证:△AEF∽△DCE.(2)若AB=3,AE=4,DE=6,求线段BF的长.22.(8分)如图,正方形中,,点在上运动(不与重台),过点作,交于点,求运动到多长时,有最大值,并求出最大值.23.(8分)某校为了解节能减排、垃圾分类等知识的普及情况,从该校2000名学生中随机抽取了部分学生进行调查,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将调查结果绘制成如图所示两幅不完整的统计图,请根据统计图回答下列问题:(1)补全条形统计图并填空,本次调查的学生共有名,估计该校2000名学生中“不了解”的人数为.(2)“非常了解”的4人中有A1、A2两名男生,B1、B2两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到两名男生的概率.24.(8分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA.25.(10分)已知实数满足,求的值.26.(10分)已知,如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先根据正方形的性质、相似三角形的判定与性质可得,设,从而可得,再在中,利用勾股定理可求出x的值,然后根据三角形的面积公式、正方形的面积公式计算即可.【详解】∵四边形CDEF为正方形,∴,,∴,,∵,,设,则,∴,在中,,即,解得或(不符题意,舍去),,则剩余部分的面积为,故选:C.【点睛】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理等知识点,利用正方形的性质找出两个相似三角形是解题关键.2、A【解析】根据坡面距离和垂直距离,利用勾股定理求出水平距离,然后求出坡度.【详解】水平距离==4,则坡度为:1:4=1:1.故选A.【点睛】本题考查了解直角三角形的应用,解答本题的关键是掌握坡度的概念:坡度是坡面的铅直高度h和水平宽度l的比.3、B【分析】根据相似三角形的周长比等于相似比可得两个三角形的相似比,根据相似三角形的面积比等于相似比的平方可求出△ABC的面积,进而可求出AB边上的高.【详解】∵,周长是的周长的,∴与的相似比为,∴,∵S△A′B′C′=,∴S△ABC=24,∵AB=8,∴AB边上的高==6,故选:B.【点睛】本题考查相似三角形的性质,相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方;熟练掌握相关性质是解题关键.4、D【分析】根据增长率问题公式即可解决此题,二月为200(1+x),三月为200(1+x)2,三个月相加即得第一季度的营业额.【详解】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1,即200[1+(1+x)+(1+x)2]=1.故选D.【点睛】此题考察增长率问题类一元二次方程的应用,注意:第一季度指一、二、三月的总和.5、C【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.6、D【解析】A.此图形不是中心对称图形,不是轴对称图形,故A选项错误;B.此图形是中心对称图形,也是轴对称图形,故B选项错误;C.此图形不是中心对称图形,是轴对称图形,故D选项错误.D.此图形是中心对称图形,不是轴对称图形,故C选项正确;故选D.7、C【分析】连接.根据“HL”可证≌,利用全等三角形的对应边相等,可得,据此判断①;根据“”可证≌,可得,从而可得,据此判断②;由(2)知,可证,据此判断③;根据两角分别相等的两个三角形相似,可证∽∽,可得,从而可得,据此判断④.【详解】解:(1)连接.如图所示:
∵四边形ABCD是正方形,
∴∠ADC=90°,
∵FG⊥FC,
∴∠GFC=90°,
在Rt△CFG与Rt△CDG中,∴≌.∴...①正确.(2)由(1),垂直平分.∴∠EDC+∠2=90°,
∵∠1+∠EDC=90°,∴.∵四边形ABCD是正方形,
∴AD=DC=AB,∠DAE=∠CDG=90°,∴≌.∴.∵为边的中点,∴为边的中点.∴.∴②错误.(3)由(2),得.∴.③正确.(4)由(3),可得∽∽.∴∴.∴④正确.故答案为:C.【点睛】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定与性质、三角形中位线定理、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.8、D【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A、是中心对称图形,故此选项不合题意;
B、是中心对称图形,故此选项不合题意;
C、是中心对称图形,故此选项不合题意;
D、不是中心对称图形,故此选项符合题意;
故选:D.【点睛】考查了中心对称图形,关键是掌握中心对称图形定义.9、D【分析】根据一元二次方程有两个不相等的实数根,得△即可求解.【详解】∵一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△解得k>2.故选D.【点睛】本题考查一元二次方程△与参数的关系,列不等式是解题关键.10、C【分析】由图形可知:第一层有1个花盆,第二层有1+6=7个花盆,第三层有1+6+12=19个花盆,第四层有1+6+12+18=37个花盆,…第n层有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)个花盆,要求第7层个数,由此代入求得答案即可.【详解】解:∵第一层有1个花盆,
第二层有1+6=7个花盆,
第三层有1+6+12=19个花盆,
第四层有1+6+12+18=37个花盆,
…
∴第n层有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)个花盆,
∴当n=7时,
∴花盆的个数是1+3×7×(7-1)=1.
故选:C.【点睛】此题考查图形的变化规律,解题关键在于找出数字之间的运算规律,利用规律解决问题.二、填空题(每小题3分,共24分)11、1【分析】根据黄金分割的概念,列出方程直接求解即可.【详解】设她应选择高跟鞋的高度是xcm,
则≈0.618,
解得:x≈1,且符合题意.
故答案为1.【点睛】此题考查黄金分割的应用,解题关键是明确黄金分割所涉及的线段的比.12、【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴=,∴=解得x=,∴阴影部分面积为:S△ABC=××1=,故答案为:.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.13、1【分析】根据∠A的余弦值列出比例式即可求出AC的长.【详解】解:在Rt△ABC中,,∴AC=故答案为1.【点睛】此题考查是已知一个角的余弦值,求直角三角形的边长,掌握余弦的定义是解决此题的关键.14、﹣【分析】根据函数图象上点的坐标特征得到ab=﹣3,a+b=5,把原式变形,代入计算即可.【详解】∵反比例函数的图象与一次函数y=﹣x+5的图象相交,其中一个交点坐标为(a,b),∴ab=﹣3,b+a=5,则,故答案为:﹣.【点睛】本题考查了反比例函数与一次函数的交点问题,掌握函数图象上点的坐标特征是解题的关键.15、【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】由图可知,黑色方砖6块,共有16块方砖,
∴黑色方砖在整个地板中所占的比值,
∴小球最终停留在黑色区域的概率是,故答案为:.【点睛】本题考查了几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.16、【分析】首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,,,四边形ABCD是矩形,,,,,,,设,则,在中,,,,即,,,,≌,,,,,,由折叠的性质可得:,,,,,故答案为.【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.17、1【分析】设红球有x个,根据题意列出方程,解方程并检验即可.【详解】解:设红球有x个,由题意得:,解得,经检验,是原分式方程的解,所以,红球有1个,故答案为:1.【点睛】本题主要考查根据概率求数量,掌握概率的求法是解题的关键.18、【分析】根据圆的面积-正方形的面积=可耕地的面积即可解答.【详解】解:∵正方形的边长是x步,圆的半径为()步∴列方程得:.故答案为.【点睛】本题考查圆的面积计算公式,解题关键是找出等量关系.三、解答题(共66分)19、(1);(2)<x<1.【分析】(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=1,得到D点坐标为(1,2),然后把D点坐标代入反比例函数表达式中,求出k的值即可得到反比例函数解析式;(2)观察函数图象即可求解.【详解】解:(1)过点B作BM⊥x轴于M,过点D作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴,即,解得:DN=2,AN=1,∴ON=OA﹣AN=1,∴D点坐标为(1,2),把D(1,2)代入y1=得,k=2×1=8,∴反比例函数解析式为;(2)由(1)知,点D的坐标为(1,2);对于,当y=6时,即6=,解得x=,故点E(,6);从函数图象看,<k2x+b时,x的取值范围为<x<1,故不等式<k2x+b的解集为<x<1.【点睛】本题主要考查反比例函数与一次函数的关系及相似三角形的判定与性质,关键是根据题意及相似三角形的性质与判定得到反比例函数的解析式,然后利用反比例函数与一次函数的关系进行求解即可.20、.【分析】作A′H⊥y轴于H.证明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出点A′坐标,再利用中点坐标公式求出点D坐标即可解决问题.【详解】作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵点A的坐标是(−2,0),点B的坐标是(0,6),∴OA=2,OB=6,∴BH=OA=2,A′H=OB=6,∴OH=4,∴A′(6,4),∵BD=A′D,∴D(3,5),∵反比例函数的图象经过点D,∴这个反比例函数的解析式【点睛】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化-旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、(1)见解析;(2)1【分析】(1)根据两个角对应相等判定两个三角形相似即可;(2)根据相似三角形的性质,对应边成比例即可求解.【详解】(1)证明:四边形是矩形,,,,.(2).,,,,,,.答:线段的长为1.【点睛】本题考查了相似三角形的判定和性质,解决本题的关键是掌握相似三角形的判定方法和性质.22、当BP=6时,CQ最大,且最大值为1.【分析】根据正方形的性质和余角的性质可得∠BEP=∠CPQ,进而可证△BPE∽△CQP,设CQ=y,BP=x,根据相似三角形的性质可得y与x的函数关系式,然后利用二次函数的性质即可求出结果.【详解】解:∵四边形ABCD是正方形,∴∠B=∠C=90°,∴∠BEP+∠BPE=90°,∵,∴∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.∴△BPE∽△CQP,∴.设CQ=y,BP=x,∵AB=BC=12,∴CP=12﹣x.∵AE=AB,AB=12,∴BE=9,∴,化简得:y=﹣(x2﹣12x),即y=﹣(x﹣6)2+1,所以当x=6时,y有最大值为1.即当BP=6时,CQ有最大值,且最大值为1.【点睛】本题考查了正方形的性质、相似三角形的判定和性质和二次函数的性质等知识,属于常见题型,熟练掌握相似三角形的性质和二次函数的性质是解答的关键.23、(1)图详见解析,50,600;(2).【分析】(1)由“非常了解”的人数及其所占百分比求得总人数,继而由各了解程度的人数之和等于总人数求得“不了解”的人数,用总人数乘以样本中“不了解”人数所占比例可得;(2)分别用树状图和列表两种方法表示出所有等可能结果,从中找到恰好抽到2名男生的结果数,利用概率公式计算可得.【详解】解:(1)本次调查的学生总人数为4÷8%=50人,则不了解的学生人数为50﹣(4+11+20)=15人,∴估计该校2000名学生中“不了解”的人数约有2000×=600人,补图如下:故答案为:50、600;(2)画树状图如下:共有12种可能的结果,恰好抽到2名男生的结果有2个,∴P(恰好抽到2名男生)==.【点睛】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.24、(1)见解析;(2)见解析【解析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证;
(2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年环保材料购销协议模板
- 2024年自愿解除婚姻关系协议
- 城市核心区地下停车库使用权出让协议
- 2024年专业室内绿植养护服务协议
- 2024年专业人力资源业务协议书
- 2024年芒果种植基地供应协议
- 中小学学校章程模板示范全套
- 2024年度实木加工原材料订购协议
- 创新型公司合伙2024年协议样本
- 白鹭课件背景教学课件
- 2024-2029年中国化妆品喷雾行业市场现状分析及竞争格局与投资发展研究报告
- 医德医风培训课件图文
- 三位数乘以三位数-计算题-竖式-50题-
- 保密宣传月新形势下的行政机关保密工作培训课件
- 剪映课件pptx-2024鲜版
- 农村自建房家装合同
- 战胜挫折主题班会教案
- 有限空间作业审批表
- 《免疫学与病原生物学》课程标准
- 宫外孕破裂出血护理查房
- 诺如病毒应急演练方案
评论
0/150
提交评论