版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省郴州市临武县九上数学期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.函数y=(x+1)2-2的最小值是()A.1 B.-1 C.2 D.-22.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500 B.300(1+2x)=1500C.300(1+x2)=1500 D.300+2x=15003.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5° B.15° C.20° D.22.5°4.在比例尺为1:800000的“中国政区”地图上,量得甲市与乙市之间的距离是2.5cm,则这两市之间的实际距离为()km.A.20000000 B.200000 C.200 D.20000005.如图,是矩形内的任意一点,连接、、、,得到,,,,设它们的面积分别是,,,,给出如下结论:①②③若,则④若,则点在矩形的对角线上.其中正确的结论的序号是()A.①② B.②③ C.③④ D.②④6.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2) B.(3,1) C.(2,2) D.(4,2)7.在RtABC中,∠C=90°,如果,那么的值是()A.90° B.60° C.45° D.30°8.如图,⊙O的半径为2,△ABC为⊙O内接等边三角形,O为圆心,OD⊥AB,垂足为D.OE⊥AC,垂足为E,连接DE,则DE的长为()A.1 B. C. D.29.点关于轴对称的点的坐标是()A. B. C. D.10.已知锐角α,且sinα=cos38°,则α=()A.38° B.62° C.52° D.72°二、填空题(每小题3分,共24分)11.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论中:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.正确的结论序号是_____.﹙直角填写正确的结论的序号﹚.12.如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则的长为____.13.如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为_____.14.如图,是的边上一点,且点的横坐标为3,,则______.15.点A(﹣3,m)和点B(n,2)关于原点对称,则m+n=_____.16.如图,四边形的两条对角线、相交所成的锐角为,当时,四边形的面积的最大值是______.17.如图,在小孔成像问题中,小孔O到物体AB的距离是60cm,小孔O到像CD的距离是30cm,若物体AB的长为16cm,则像CD的长是_____cm.18.点A(1,-2)关于原点对称的点A1的坐标为________.三、解答题(共66分)19.(10分)问题提出:如图所示,有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上.a.每次只能移动1个金属片;b.较大的金属片不能放在较小的金属片上面.把个金属片从1号针移到3号针,最少移动多少次?问题探究:为了探究规律,我们采用一般问题特殊化的方法,先从简单的情形入手,再逐次递进,最后得出一般性结论.探究一:当时,只需把金属片从1号针移到3号针,用符号表示,共移动了1次.探究二:当时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动的顺序是:a.把第1个金属片从1号针移到2号针;b.把第2个金属片从1号针移到3号针;c.把第1个金属片从2号针移到3号针.用符号表示为:,,.共移动了3次.探究三:当时,把上面两个金属片作为一个整体,则归结为的情形,移动的顺序是:a.把上面两个金属片从1号针移到2号针;b.把第3个金属片从1号针移到3号针;c.把上面两个金属片从2号针移到3号针.其中(1)和(3)都需要借助中间针,用符号表示为:,,,,,,.共移动了7次.(1)探究四:请仿照前面步骤进行解答:当时,把上面3个金属片作为一个整体,移动的顺序是:___________________________________________________.(2)探究五:根据上面的规律你可以发现当时,需要移动________次.(3)探究六:把个金属片从1号针移到3号针,最少移动________次.(4)探究七:如果我们把个金属片从1号针移到3号针,最少移动的次数记为,当时如果我们把个金属片从1号针移到3号针,最少移动的次数记为,那么与的关系是__________.20.(6分)如图,AB是⊙O的直径,,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.21.(6分)解一元二次方程:x2﹣5x+6=1.22.(8分)已知正方形ABCD的边长为2,中心为M,⊙O的半径为r,圆心O在射线BD上运动,⊙O与边CD仅有一个公共点E.(1)如图1,若圆心O在线段MD上,点M在⊙O上,OM=DE,判断直线AD与⊙O的位置关系,并说明理由;(2)如图2,⊙O与边AD交于点F,连接MF,过点M作MF的垂线与边CD交于点G,若,设点O与点M之间的距离为,EG=,当时,求的函数解析式.23.(8分)如图,在△ABC中,∠B=45°,AC=5,cosC=,AD是BC边上的高线.(1)求AD的长;(2)求△ABC的面积.24.(8分)(1)计算:(2)若关于的方程有两个相等的实数根,求的值.25.(10分)某商店经营家居收纳盒,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每个收纳盒售价不能高于40元.设每个收纳盒的销售单价上涨了元时(为正整数),月销售利润为元.(1)求与的函数关系式.(2)每个收纳盒的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?26.(10分)解方程:(l)(2)(配方法).
参考答案一、选择题(每小题3分,共30分)1、D【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.2、A【详解】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=1.故选A.3、B【详解】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°故选:B4、C【分析】比例尺=图上距离:实际距离.列出比例式,求解即可得出两地的实际距离.【详解】设这两市之间的实际距离为xcm,则根据比例尺为1:800000,列出比例式:1:800000=2.5:x,解得x=1.1cm=200km故选:C.【点睛】本题考查了比例尺的意义,注意图上距离跟实际距离单位要统一.5、D【分析】根据三角形面积公式、矩形性质及相似多边形的性质得出:①矩形对角线平分矩形,S△ABD=S△BCD,只有P点在BD上时,S₁+S₂=S₃+S4;②根据底边相等的两个三角形的面积公式求和可知,S₁+S₃=矩形ABCD面积,同理S₂+S4=矩形ABCD面积,所以S₁+S₃=S₂+S4;③根据底边相等高不相等的三角形面积比等于高的比来说明即可;④根据相似四边形判定和性质,对应角相等、对应边成比例的四边形相似,矩形AEPF∽矩形ABCD推出,点P在对角线上.【详解】解:①当点P在矩形的对角线BD上时,S₁+S₂=S₃+S4.但P是矩形ABCD内的任意一点,所以该等式不一定成立。故①不一定正确;②∵矩形∴AB=CD,AD=BC∵△APD以AD为底边,△PBC以BC为底边,这两三角形的底相等,高的和为AB,∴S₁+S₃=S矩形ABCD;同理可得S₂+S4=S矩形ABCD,∴②S₂+S4=S₁+S₃正确;③若S₃=2S₁,只能得出△APD与△PBC高度之比是,S₂、S4分别是以AB、CD为底的三角形的面积,底相等,高的比不一定等于,S4=2S2不一定正确;故此选项错误;④过点P分别作PF⊥AD于点F,PE⊥AB于点E,F.若S1=S2,.则AD·PF=AB·PE∴△APD与△PAB的高的比为:∵∠DAE=∠PEA=∠PFA=90°∴四边形AEPF是矩形,∴矩形AEPF∽矩形ABCD∴∴P点在矩形的对角线上,选项④正确.故选:D【点睛】本题考查了三角形面积公式的应用,相似多边形的判定和性质,用相似多边形性质对应边成比例是解决本题的难点.6、A【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.7、C【分析】根据锐角三角函数的定义解得即可.【详解】解:由已知,,∵∴∵∠C=90°∴=45°故选:C【点睛】本题考查了锐角三角函数的定义,解答关键是根据定义和已知条件构造等式求解.8、C【分析】过O作于H,得到,连接OB,由为内接等边三角形,得到,求得,根据垂径定理和三角形的中位线定理即可得到结论.【详解】解:过作于,,连接,为内接等边三角形,,,,,,,,,,故选:.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了三角形中位线定理.9、D【分析】根据特殊锐角的三角函数值,先确定点M的坐标,然后根据关于x轴对称的点的坐标x值不变,y值互为相反数的特点进行选择即可.【详解】因为,所以,所以点所以关于x轴的对称点为故选D.【点睛】本题考查的是特殊角三角函数值和关于x轴对称的点的坐标特点,熟练掌握三角函数值是解题的关键.10、C【分析】根据一个角的正弦值等于它的余角的余弦值求解即可.【详解】∵sinα=cos38°,
∴α=90°-38°=52°.
故选C.【点睛】本题考查了锐角三角函数的性质,掌握正余弦的转换方法:一个角的正弦值等于它的余角的余弦值.二、填空题(每小题3分,共24分)11、①③④【分析】由当AB与光线BC垂直时,m最大即可判断①②,由最小值为AB与底面重合可判断③,点光源固定,当线段AB旋转时,影长将随物高挡住光线的不同位置发生变化过程可判断④.【详解】当木杆绕点A按逆时针方向旋转时,如图所示当AB与光线BC垂直时,m最大,则m>AC,①成立;
①成立,那么②不成立;
最小值为AB与底面重合,故n=AB,故③成立;
由上可知,影子的长度先增大后减小,④成立.
故答案为:①③④.12、2π.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.【详解】解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的长=,故答案为:2π.【点睛】本题考查的是圆周角定理、弧长的计算,掌握圆周角定理、弧长公式是解题的关键.13、【解析】设AB=a,AD=b,则ab=32,构建方程组求出a、b值即可解决问题.【详解】设AB=a,AD=b,则ab=32,由∽可得:,∴,∴,∴,,设PA交BD于O,在中,,∴,∴,故答案为.【点睛】本题考查翻折变换、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握和应用相关的性质定理是解题的关键.14、【分析】由已知条件可得出点P的纵坐标为4,则就等于点P的纵坐标与其横坐标的比值.【详解】解:由题意可得,∵,∴点P的纵坐标为4,∴就等于点P的纵坐标与其横坐标的比值,∴.故答案为:.【点睛】本题考查的知识点是正弦与正切的定义,熟记定义内容是解此题的关键.15、1【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】∵点A(-3,m)与点A′(n,2)关于原点中心对称,∴n=3,m=-2,∴m+n=1,故答案为1.【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.16、【分析】设AC=x,根据四边形的面积公式,,再根据得出,再利用二次函数最值求出答案.【详解】解:∵AC、BD相交所成的锐角为∴根据四边形的面积公式得出,设AC=x,则BD=8-x所以,∴当x=4时,四边形ABCD的面积取最大值故答案为:【点睛】本题考查的知识点主要是四边形的面积公式,熟记公式是解题的关键.17、8【解析】根据相似三角形的性质即可解题.【详解】解:由小孔成像的特征可知,△OAB∽△OCD,由相似三角形的性质可知:对应高比=相似比=对应边的比,∴30:60=CD:16,解得:CD=8cm.【点睛】本题考查了相似三角形的判定和性质,属于简单题,熟悉性质内容是解题关键.18、(-1,2)【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点A(1,-2)与点A1(-1,2)关于原点对称,∴A1(-1,2).故答案为:(-1,2).【点睛】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.三、解答题(共66分)19、(1)当时,移动顺序为:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2),(3),(4)【分析】根据移动方法与规律发现,随着盘子数目的增多,都是分两个阶段移动,用盘子数目减1的移动次数都移动到2柱,然后把最大的盘子移动到3柱,再用同样的次数从2柱移动到3柱,从而完成,然后根据移动次数的数据找出总的规律求解即可.【详解】解:(1)当时,把上面3个金属片作为一个整体,移动的顺序是:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).故答案为:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2)解:设是把n个盘子从1柱移到3柱过程中移动盘子之最少次数n=1时,f(1)=1;n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成,即n=3时,小盘→3柱,中盘→2柱,小盘从3柱→2柱,大盘从1柱→3柱,小盘从2柱→1柱,中盘从2柱→3柱,小盘从1柱→3柱,完成.[用种方法把中、小两盘移到2柱,大盘3柱;再用种方法把中、小两盘从2柱3柱,完成],故答案为:(3)由(2)知:故答案为:(4)故答案为:【点睛】本题考查了归纳推理、图形变化的规律问题,根据题目信息,得出移动次数分成两段计数,利用盘子少一个时的移动次数移动到2柱,把最大的盘子移动到3柱,然后再用同样的次数从2柱移动到3柱,从而完成移动过程是解题的关键,本题对阅读并理解题目信息的能力要求比较高.20、(1)证明见解析;(2)BD=.【分析】(1)连接OC,由已知可得∠BOC=90°,根据SAS证明△OCE≌△BFE,根据全等三角形的对应角相等可得∠OBF=∠COE=90°,继而可证明直线BF是⊙O的切线;(2)由(1)的全等可知BF=OC=2,利用勾股定理求出AF的长,然后由S△ABF=,即可求出BD=.【详解】解:(1)连接OC,∵AB是⊙O的直径,,∴∠BOC=90°,∵E是OB的中点,∴OE=BE,在△OCE和△BFE中,,∴△OCE≌△BFE(SAS),∴∠OBF=∠COE=90°,∴直线BF是⊙O的切线;(2)∵OB=OC=2,由(1)得:△OCE≌△BFE,∴BF=OC=2,∴AF=,∴S△ABF=,即4×2=2BD,∴BD=.【点睛】本题考查了切线的判定、全等三角形的判定与性质、勾股定理、三角形面积的不同表示方法,熟练掌握相关的性质与定理是解题的关键.21、x1=2,x2=2【分析】根据因式分解法解一元二次方程,即可求解.【详解】∵x2﹣5x+6=1,∴(x﹣2)(x﹣2)=1,∴x﹣2=1或x﹣2=1,∴x1=2,x2=2.【点睛】本题主要考查解一元二次方程,掌握因式分解法解方程,是解题的关键.22、(1)相切,证明详见解析;(2).【分析】(1)过O作OF⊥AD于F,连接OE,可证△ODF≌△ODE,可得OF=OE,根据相切判定即可得出:AD与相切;(2)连接MC,可证,可得DF=CG,过点E作EP⊥BD于P,过点F作FH⊥BD于H设DP=a,DH=b,由于△DHF与△DPE都是等腰直角三角形,设EP=DP=a,FH=DH=b,利用勾股定理:可列出方程组解得a=b,可得,.由于可得,由可得OD=a,由OD=OM-DM,可得,代入2DF+y=2可得,整理得y与x的函数解析式,由DF≤1,EG≥0,可得x的取值范围,即可求解问题.【详解】解:(1)直线AD与⊙O相切,理由如下:过O作OF⊥AD于F,连接OE∴∠OFD=90°在正方形ABCD中,BD平分∠ADE,∠ADE=90°∴∠FDO=∠EDO=45°∵与CD仅有一个公共点E∴CD与相切∴OE⊥DC,OE为半径∴∠OED=90°又∵OD=OD∴△ODF≌△ODE∴OF=OE∵OF⊥AD、OF=OE∴AD与相切(2)连接MC在正方形ABCD中,∠BCD=90°,∠ADB=45°∵∠BCD=90°,M为正方形的中心∴MC=MD=,∠ADB=∠DCM=45°∵FM⊥MG,即∠FMG=90°且在正方形ABCD中,∠DMC=90°∴∠FMD+∠DMG=∠DMG+∠CMG∴∠FMD=∠CMG∴∴DF=CG过点E作EP⊥BD于P,过点F作FH⊥BD于H设DP=a,DH=b∵∠FDM=∠EDM=45°∴△DHF与△DPE都是等腰直角三角形∴EP=DP=a,FH=DH=b∵,且由(1)得∴点O在正方形ABCD外∴OP=OD+DP,OH=OD+DH在Rt△OPE与Rt△OHF中得:(a-b)(OD+a+b)=0∴a-b=0或OD+a+b=0∵OD+a+b>0∴a-b=0∴a=b即点P与点H重合,也即EF⊥BD,垂足为P(或H)∵DP=a,DH=b∵在Rt△DPE中,在Rt△DHF中,∴DF=DE∵CD=DE+EG+CG=2,即2DF+EG=2∴2DF+y=2∵在Rt△DPF中,,且∴在Rt△OPE与Rt△OHF中∴∴OD+a=2a∴OD=a又因为OD=OM-DM,即∴又因为2DF+y=2∴∴∴∵DF≤1,且2DF+EG=2∴EG≥0,即y≥0∴∴∴y与x的函数解析式为【点睛】本题考查一次函数综合题、正方形的性质、三角形全等的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识,学会利用参数,构建方程以及方程组解决问题.23、(1)AD=2;(2)S△ABC=1.【分析】(1)由高的定义可得出∠ADC=∠ADB=90°,在Rt△ACD中,由AC的长及cosC的值可求出CD的长,再利用勾股定理即可求出AD的长;(2)由∠B,∠ADB的度数可求出∠BAD的度数,即可得出∠B=∠BAD,利用等角对等边可得出BD的长,再利用三角形的面积公式即可求出△ABC的面积.【详解】解:(1)∵AD⊥BC,∴∠AD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校垃圾分类督导员工作总结
- 2024年智能设备硬件采购协议
- 2024室内装潢工程合作协议书
- 2024广告服务公司与客户协议
- 2024年供应商协议格式
- 2024年专项事务跟踪代理协议模板
- 2024城市地下停车场租赁协议
- 2024年商品交易协议模板
- 2024年稻草批发销售协议范本
- KTV装修协议2024签订需知细节
- 绘本成语故事:四面楚歌
- 孩子磨蹭和拖拉怎么办
- 东尼 博赞经典书系(套装5册):超级记忆
- DPPH和ABTS、PTIO自由基清除实验-操作图解-李熙灿-Xican-Li
- 高中生物教研组工作计划(通用9篇)
- 郴州市建筑节能产品(材料)备案证明
- 汽车外覆盖件
- 公共政策课件 swot分析与美国西南航空公司的成功
- 西方经济学十大原理
- 函数的奇偶性(第二课时) (知识精讲+备课精研) 高一数学 课件(苏教版2019必修第一册)
- xx学校“无废校园”创建推进工作总结
评论
0/150
提交评论