版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
镇江市第一外国语2025届数学七年级第一学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列说法中正确的是()A.直线比射线长B.AB=BC,则点B是线段AC的中点C.平角是一条直线D.两条直线相交,只有一个交点2.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A1,第2次移动到A2,第3次移动到A3,……,第n次移动到An,则△OA2A2019的面积是()A.504 B. C. D.10093.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…依此类推,则a2019的值为()A.﹣1009 B.﹣1008 C.﹣2017 D.﹣20164.=()A.1 B.2 C.3 D.45.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有()A.①② B.①③ C.②④ D.③④6.如图,下列条件:①;②;③;④,其中能判定的是()A.①② B.②③ C.①④ D.②④7.已知代数式,则代数式的值是()A. B. C. D.8.2018年是改革开放40周年,四十年春华秋实,改革开放波澜壮阔,这是一个伟大的时代,据报道:我市2018年城乡居民人均可支配收入达到34534元,迈上新台阶,将34534用科学记数法表示为()A.3.4534×104 B.3.4534×105 C.3.4534×103 D.34.534×1039.在数轴上,到表示的点的距离等于5个单位的点所表示的数是()A.10 B. C.0或 D.或1010.若分式中的x和y都扩大5倍,那么分式的值()A.不变 B.扩大5倍 C.缩小到原来的5倍 D.无法判断二、填空题(本大题共有6小题,每小题3分,共18分)11.比较:32.75°______31°75′(填“<”“>”或“=”)12.若和是同类项,则__________.13.已知一个角的补角是它余角的3倍,则这个角的度数为_____.14.如图,是直线上的顺次四点,分别是的中点,且,则____________.15.如图,从点O引出的射线(任两条不共线)条数与角的总个数有如下关系:从点O引出两条射线形成1个角;如图1从点O引出3条射线共形成3个角;如图2从点O引出4条射线共形成6个角;如图3从点O引出5条射线共形成10个角;(1)观察操作:当从点O引出6条射线共形成有________个角;(2)探索发现:如图4当从点O引出n条射线共形成________个角;(用含n的式子表示)(3)实践应用:8支篮球队进行单循环比赛(参加比赛的每两支球队之间都要进行一场比赛),总的比赛场数为__________场.如果n支篮球队进行主客场制单循环赛(参加的每个队都与其它所有队各赛2场)总的比赛场数是______场.16.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=_____度.三、解下列各题(本大题共8小题,共72分)17.(8分)用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?18.(8分)如图:是某月份的月历表,请你认真观察月历表,回答以下问题:(1)如果圈出同一行的三个数,用a表示中间的数,则第一个数,第三个数怎样表示?(2)如果圈出同一列的三个数,用a表示中间的数,则第一个数,第三个数怎样表示?(3)如果圈出如图所示的任意9个数,这9个数的和可能是207吗?如果可能,请求出这9个数;如果不可能,请说明理由.19.(8分)温度与我们的生活息息相关,如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(℉).设摄氏温度为x(℃)华氏温度为y(℉),则y是x的一次函数,通过观察我们发现,温度计上的摄氏温度为0℃时,华氏温度为32℉;摄氏温度为﹣20℃时,华氏温度为﹣4℉请根据以上信息,解答下列问题(1)仔细观察图中数据,试求出y与x的函数关系式;(2)当摄氏温度为﹣5℃时,华氏温度为多少?(3)当华氏温度为59℉时,摄氏温度为多少?20.(8分)已知∠COD=90°,且∠COD的顶点O恰好在直线AB上.(1)如图1,若∠COD的两边都在直线AB同侧,回答下列问题:①当∠BOD=20°时,∠AOC的度数为°;②当∠BOD=55°时,∠AOC的度数为°;③若∠BOD=α,则∠AOC的度数用含α的式子表示为;(2)如图2,若∠COD的两边OC,OD分别在直线AB两侧,回答下列问题:①当∠BOD=28°30′时,∠AOC的度数为;②如图3,当OB恰好平分∠COD时,∠AOC的度数为°;③图2中,若∠BOD=α,则∠AOC的度数用含α的式子表示为.21.(8分)已知甲、乙两地相距160km,、两车分别从甲、乙两地同时出发,车速度为85km/h,车速度为65km/h.(1)、两车同时同向而行,车在后,经过几小时车追上车?(2)、两车同时相向而行,经过几小时两车相距20km?22.(10分)如图,在平面直角坐标系中,点O为坐标原点,点A的坐标为,点B的坐标为,点C的坐标为,且m,n满足.(1)分别求点A、点C的坐标;(2)P点从点C出发以每秒2个单位长度的速度向终点B匀速运动,连接AP,设点P的运动时间为t秒,三角形ABP的面积为s(平方单位),求s与t的关系式;(3)在(2)的条件下,过点P作轴交线段CA于点Q,连接BQ,当三角形BCQ的面积与三角形ABQ的面积相等时,求Q点坐标.23.(10分)某学校举行“每天锻炼一小时,健康生活一辈子”为主题的体育活动,并开展了以下体育项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项。为了解选择各项体育活动的学生人数,随机抽取了部分学生进行调查,并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了名学生;(2)补全条形统计图;(3)求选择篮球项目的人数在扇形统计图中所占的百分比?(4)若该学校有1500人,请你估计该学校选择乒乓球项目的学生人数约是多少人?24.(12分)如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=25°,求∠AOB的度数.
参考答案一、选择题(每小题3分,共30分)1、D【分析】直线和射线都无限长;经过一点可以画无数条直线;平角不是一条直线是角;两条直线相交,只有一个交点.【详解】解:A、直线和射线都无限长;故不符合题意;B、当点B在线段AC上时,如果AB=BC,则点B是线段AC的中点;故不符合题意;C、平角不是一条直线是角;故不符合题意;D、两条直线相交,只有一个交点,故符合题意.故选:D.【点睛】本题考查角,直线、射线、相交线,两点间的距离,正确的理解概念是解题的关键.2、B【分析】观察图形可知:,由,推出,由此即可解决问题.【详解】观察图形可知:点在数轴上,,,,点在数轴上,,故选B.【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.3、A【分析】根据a1,a2,a3,a4……的值找出规律即可.【详解】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,所以n是奇数时,结果等于﹣;n是偶数时,结果等于﹣;a2019=﹣1.故选A.【点睛】本题考查了含绝对值的有理数的运算及找规律问题,解题的关键是正确运算并找出规律.4、B【解析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.5、C【详解】试题分析:直接利用直线的性质以及两点确定一条直线的性质分析得出答案.解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选C.考点:直线的性质:两点确定一条直线.6、C【分析】根据平行线的判定方法分析即可.【详解】解:①∵,∴AB//CD,故符合题意;②∵,∴AD//BC,故不符合题意;③∵,∴AD//BC,故不符合题意;④∵,∴AB//CD,故符合题意;故选C.【点睛】本题考查了行线的判定方法,熟练掌握平行线的行线的判定方法是解答本题的关键.平行线的判定方法:①两同位角相等,两直线平行;
②内错角相等,两直线平行;③同旁内角互补,两直线平行.7、B【分析】由代数式,得出,易得的值,再整体代入原式即可.【详解】,,,.故选:.【点睛】本题主要考查了代数式求值,先根据题意得出的值,再整体代入时解答此题的关键.8、A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于31531有5位,所以可以确定n=5﹣1=1.【详解】解:31531=3.1531×101.故选A.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.9、C【分析】借助数轴可知这样的点在-5的左右两边各一个,分别讨论即可.【详解】若点在-5左边,此时到表示的点的距离等于5个单位的点所表示的数是-5-5=-10;若点在-5右边,此时到表示的点的距离等于5个单位的点所表示的数是-5+5=0;综上所述,到表示的点的距离等于5个单位的点所表示的数是-10或0故选:C.【点睛】本题主要考查数轴与有理数,注意分情况讨论是解题的关键.10、A【分析】根据分式的分子和分母都乘以(或除以)同一个不为零的整式分式的值不变解答.【详解】∵分式中的x和y都扩大5倍,∴2y扩大为原来的5倍,3x-3y扩大为原来的5倍,∴不变,故选:A.【点睛】此题考查分式的基本性质:分式的分子和分母都乘以(或除以)同一个不为零的整式,分式的值不变,熟记性质定理是解题的关键.二、填空题(本大题共有6小题,每小题3分,共18分)11、>.【分析】先将已知的角度统一成度、分、秒的形式,再进行比较.【详解】解:因为32.75°=32°45′,31°75′=32°15′,
32°45′>32°15′,
所以32.75°>31°75′,
故答案为>.【点睛】本题考查了角的比较,熟练掌握度、分、秒的转化是解题的关键.12、1【分析】根据同类项的定义得出a,b的值,进而代入解答即可.【详解】根据题意可得:a−1=2,b+1=3,解得:a=3,b=2,所以ab=3×2=1,故答案为:1.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13、45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.14、1;【分析】根据线段的和差,可得(BM+CN)的长,由线段中点的性质,可得AB=2MB,CD=2CN,根据线段的和差,可得答案.【详解】由线段的和差,得MB+CN=MN−BC=6−4=2cm,由M、N分别是AB、CD的中点,得AB=2MB,CD=2CN.AB+CD=2(MB+CN)=2×2=4cm,由线段的和差,得AD=AB+BC+CD=6+4=1cm.故答案为:1.【点睛】本题考查了两点间的距离,利用线段的和差得出(BM+CN)的长是解题关键.15、1528n(n-1)【分析】(1)现察图形可知,2条射线组成1个角,3条射线就可以组成2+1=3个角,4条射线可以组成3+2+1=6个角,依此可得6条射线组成角的个数是1+2+3+4+5然后计算即可;(2)根据(1)的规律可知:n条射线组成角的个数是1+2+3+…+(n-1),然后计算即可;(3)将每只球队当作一条射线,每场单循环赛当作一个角,然后利用(2)的规律解答即可;【详解】解:(1)现察图形可知,2条射线组成1个角,3条射线就可以组成2+1=3个角,4条射线可以组成3+2+1=6个角,依此可得6条射线组成角的个数是1+2+3+4+5=15;(2)根据(1)的规律可知:n条射线组成角的个数是1+2+3+…+(n-1)=;(3)将每只球队当作一条射线,每场单循环赛当作一个角,所以8支篮球队进行单循环比赛相当于8条射线可以组成的角,即比赛场数=28;如果n支篮球队进行主客场制单循环赛(参加的每个队都与其它所有队各赛2场)总的比赛场数是×2=n(n-1).故答案为(1)15,(2),(3)28,n(n-1).【点睛】考查了数角的个数、归纳总结规律以及迁移应用规律的能力,根据题意总结规律和迁移应用规律是解答本题的关键.16、30°【分析】根据旋转的性质得到∠BOD=45°,再用∠BOD减去∠AOB即可.【详解】∵将△AOB绕点O按逆时针方向旋转45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案为30°.三、解下列各题(本大题共8小题,共72分)17、用张制盒身,张制盒底【分析】设用x张制盒身,则(150-x)张制盒底,根据题意可知题目中的等量关系:制盒身铁皮的张数×每张铁皮可制盒身的个数×2=制盒底铁皮的张数×每张铁皮可制盒底的个数,据此解答.【详解】解:设用x张制盒身,则(150-x)张制盒底,
根据题意得:16x×2=43(150-x),
解得x=86,
所以150-x=150-86=64(张),
答:用86张制盒身,则64张制盒底.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.18、(1)同一行中的第一个数为:a-1,第三个数为:a+1;(2)同一列中的第一个数为a-7,第三个数为:a+7;(3)可能,此时的九个数别是:15,16,17;22,23,24;29,30,31.【分析】(1)根据左右相邻的两个数相差1解答即可;(2)根据上下相邻的两个数相差7解答即可;(3)设中间的数为x,表示出其余8个数,列方程求解即可.【详解】解:﹙1﹚同一行中的第一个数为:a-1,第三个数为:a+1;﹙2﹚同一列中的第一个数为a-7,第三个数为:a+7;﹙3﹚设9个数中间的数为:x,则这九个数别为:x+8,x+7,x+6,x-1,x,x+1,x-8,x-7,x-6,则这9个数的和为:﹙x+8﹚+﹙x+7﹚+﹙x+6﹚+﹙x-1﹚+﹙x+1﹚+x+﹙x-8﹚+﹙x-7﹚+﹙x-6﹚=9x,所以:当9个数的和为207时,即:9x=207解得:x=23,所以:此时的九个数别是:151617222324293031.【点睛】本题考查了列代数式,以及一元一次方程的应用-日历问题,明确日历相邻数字的特点是解答本题的关键.19、(1)y=x+32;(2)2℉;(3)3℃.【分析】(1)设y关于x的函数关系式为y=kx+b,根据给定两组数据得出关于k和b的二元一次方程组,解方程组即可得出结论;(2)将x=﹣5代入(1)得出的函数关系式中,求出y的值即可;(3)将y=59代入(1)得出的函数关系式中,得出关于x的一元一次方程,解方程即可得出结论.【详解】解:(1)设y关于x的函数关系式为y=kx+b,由温度计的示数得当x=0时,y=32;当x=20时,y=1.所以,解得:.故y关于x的函数关系式为y=x+32;(2)当x=﹣5时,y=×(﹣5)+32=2.即当摄氏温度为﹣5℃时,华氏温度为2℉;(3)令y=59,则有x+32=59,解得:x=3.故当华氏温度为59℉时,摄氏温度为3℃.【点睛】本题考查了一次函数的应用,待定系数法求一次函数解析式,已知函数值求自变量的值和已知自变量的值求函数值,解题的关键正确求出函数的解析式.20、(1)①70;②35;③90°-α;(2)①118°30′;②135;③90°+α【分析】(1)①由∠AOC=180°-∠COD-∠BOD求出即可;②由∠AOC=180°-∠COD-∠BOD求出即可;③由∠AOC=180°-∠COD-∠BOD求出即可;(2)①根据∠BOC=∠COD-∠BOD求出∠BOC的度数,再根据∠AOC=180°-∠BOC求出∠AOC的度数即可;②由题意知∠BOC=∠COD,求出∠BOC的度数,再根据∠AOC=180°-∠BOC求出∠AOC的度数即可;③根据∠BOC=∠COD-∠BOD求出∠BOC的度数,再根据∠AOC=180°-∠BOC求出∠AOC的度数即可.【详解】解:(1)①∵∠AOC+∠COD+∠BOD=180°,∠COD=90°,∠BOD=20°,∴∠AOC=180°-∠COD-∠BOD=180°-90°-20°=70°.②∵∠AOC+∠COD+∠BOD=180°,∠COD=90°,∠BOD=55°,∴∠AOC=180°-∠COD-∠BOD=180°-90°-55°=35°.③∵∠AOC+∠COD+∠BOD=180°,∠COD=90°,∠BOD=α,∴∠AOC=180°-∠COD-∠BOD=180°-90°-α=90°-α.(2)①∵∠COD=∠BOD+∠BOC=90°,∠BOD=28°30′,∴∠BOC=∠COD-∠BOD=90°-28°30′=61°30′,∵∠AOC+∠BOC=180°,∴∠AOC=180°-∠BOC=180°-61°30′=118°30′.②∵∠COD=90°,OB平分∠COD∴∠BOC=∠COD=45°,∵∠AOC+∠BOC=180°,∴∠AOC=180°-∠BOC=180°-45°=135°.③∵∠COD=∠BOD+∠BOC=90°,∠BOD=α,∴∠BOC=∠COD-∠BOD=90°-α,∵∠AOC+∠BOC=180°,∴∠AOC=180°-∠BOC=180°-(90°-α)=90°+α.【点睛】本题考查了角的计算及角平分线的定义.能根据图形和已知求出各个角的度数是解题的关键.21、(1)经过8小时A车追上B车;(2)经过或1.2小时两车相距20千米【分析】(1)设经过x小时A车追上B车,根据A行驶的路程比B多160千米列出方程并解答;(2)设经过a小时两车相距20千米.分两种情况进行讨论:①相遇前两车相距20千米;②遇后两车相距20千米.【详解】解:(1)设经过x小时A车追上B车,根据题意得:85x-65x=160,解之得x=8,答:经过8小时A车追上B车;(2)设经过a小时两车相距20千米,分两种情况:①相遇前两车相距20千米,列方程为:85a+65a+20=160,解之得a=;②相遇后两车相距20千米,列方程为:85a+65a-2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度山西省高校教师资格证之高等教育心理学自测模拟预测题库
- 学校垃圾分类督导员工作总结
- 2024年智能设备硬件采购协议
- 2024室内装潢工程合作协议书
- 2024广告服务公司与客户协议
- 2024年供应商协议格式
- 2024年专项事务跟踪代理协议模板
- 2024城市地下停车场租赁协议
- 2024年商品交易协议模板
- 2024年稻草批发销售协议范本
- 培训课程版权合同模板
- 投诉法官枉法裁判范本
- 密封条范文模板(A4打印版)
- 辛亥革命(共16张PPT)
- 家庭农场项目建设方案3篇
- 最新数字化信息化智能化在磁控溅射卧式铝镜生产技术中应用
- 梁场临建技术交底
- 镰刀形细胞贫血症PPT课件
- 热压封口机3Q验证方案
- 第2讲同步发电机数学模型
- 五年级上册数学应用题精选150道
评论
0/150
提交评论