版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省师大附中梅溪湖中学2025届九上数学期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在菱形中,,,为中点,是上一点,为上一点,且,,交于点,关于下列结论,正确序号的选项是()①,②,③④A.①② B.①②③ C.①②④ D.①③④2.如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>13.若x=2是关于x的一元二次方程x2﹣2a=0的一个根,则a的值为()A.3 B.2 C.4 D.54.已知,则的值是()A. B. C. D.5.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法中不正确的是()A.当1<a<5时,点B在⊙A内B.当a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外6.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么()A.a>0,y1>y2B.a>0,y1<y2C.a<0,y1>y2D.a<0,y1<y27.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是()A.4 B.2 C. D.8.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个 B.15个 C.20个 D.35个9.若整数a使关于x的分式方程=2有整数解,且使关于x的不等式组至少有4个整数解,则满足条件的所有整数a的和是()A.﹣14 B.﹣17 C.﹣20 D.﹣2310.方程的根是()A. B. C., D.,二、填空题(每小题3分,共24分)11.在中,,,,则的长是__________.12.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=1.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是(写出所有正确结论的序号).13.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,在一定范围内,每增加1棵,所出售的这批树苗每棵售价降低0.5元,若该校最终向园林公司支付树苗款8800元,设该校共购买了棵树苗,则可列出方程__________.14.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为▲.15.函数的自变量的取值范围是.16.设、是关于的方程的两个根,则__________.17.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.18.如果函数是关于的二次函数,则__________.三、解答题(共66分)19.(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.20.(6分)已知二次函数y=ax2﹣2ax+k(a、k为常数,a≠0),线段AB的两个端点坐标分别为A(﹣1,2),B(2,2).(1)该二次函数的图象的对称轴是直线;(2)当a=﹣1时,若点B(2,2)恰好在此函数图象上,求此二次函数的关系式;(3)当a=﹣1时,当此二次函数的图象与线段AB只有一个公共点时,求k的取值范围;(4)若k=a+3,过点A作x轴的垂线交x轴于点P,过点B作x轴的垂线交x轴于点Q,当﹣1<x<2,此二次函数图象与四边形APQB的边交点个数是大于0的偶数时,直接写出k的取值范围.21.(6分)如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,(1)求B到C的距离;(2)如果在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由(≈1.732).22.(8分)有四组家庭参加亲子活动,A、B、C、D分别代表四个家长,他们的孩子分别是a、b、c、d,若主持人随机从家长、孩子中各选择一个,请你用树状图或列表的方法求出选中的两人刚好是同一个家庭的概率.23.(8分)解方程:x+3=x(x+3)24.(8分)如图,在矩形的边上取一点,连接并延长和的延长线交于点,过点作的垂线与的延长线交于点,与交于点,连接.(1)当且时,求的长;(2)求证:;(3)连接,求证:.25.(10分)如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠BAO=30°,AB=BO,反比例函数y=(x<0)的图象经过点A(1)求∠AOB的度数(2)若OA=,求点A的坐标(3)若S△ABO=,求反比例函数的解析式26.(10分)如图,直线y=k1x+b与双曲线y=交于点A(1,4),点B(3,m).(1)求k1与k2的值;(2)求△AOB的面积.
参考答案一、选择题(每小题3分,共30分)1、B【分析】依据,,即可得到;依据,即可得出;过作于,依据,根据相似三角形的性质得到;依据,,可得,进而得到.【详解】解:∵菱形中,,.∴,,∴,故①正确;∴,又∵,为中点,,∴,即,又∵,∴∵,∴,∴,∴,故②正确;如图,过作于,则,∴,,,∴中,,又∵,∴,故③正确;∵,,,,∴,,∴,∴,故④错误;故选:B.【点睛】此题考查相似三角形的判定与性质、菱形的性质、等边三角形的性质的综合运用.解题关键在于掌握判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.2、D【解析】分析:根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.详解:观察函数图象,发现:当-2<x<0或x>1时,一次函数图象在反比例函数图象的下方,
∴不等式ax+b<的解集是-2<x<0或x>1.
故选D.点睛:本题考查了反比例函数与一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键.3、A【分析】把x=2代入已知方程,列出关于a的新方程,通过解新方程可以求得a的值.【详解】∵x=2是关于x的一元二次方程x2﹣2a=0的一个根,∴22×﹣2a=0,解得a=1.即a的值是1.故选:A.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.4、A【解析】先把二次根式化简变形,然后把a、b的值代入计算,即可求出答案.【详解】解:∵,∴===;故选:A.【点睛】本题考查了二次根式的化简求值,解题的关键是熟练掌握完全平方公式和平方差公式进行化简.5、B【解析】试题解析:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项A、C、D正确,选项B错误.故选B.点睛:若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.6、C【解析】由当x=2时,函数y有最大值,根据抛物线的性质得a<0,抛物线的对称轴为直线x=2,当x>2时,y随x的增大而减小,所以由2<x2<x2得到y2>y2.【详解】∵当x=2时,函数y有最大值,∴a<0,抛物线的对称轴为直线x=2.∵2<x2<x2,∴y2>y2.故选C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上的点满足其解析式.也考查了二次函数的性质.7、C【分析】根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【详解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=.故选C.【点睛】本题考查平行线分线段成比例定理.解题的关键是注意掌握各比例线段的对应关系.8、A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选A.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.9、A【解析】根据不等式组求出a的范围,然后再根据分式方程求出a的范围,从而确定a满足条件的所有整数值,求和即可.【详解】不等式组整理得:,由不等式组至少有4个整数解,得到a+2<﹣1,解得:a<﹣3,分式方程去分母得:12﹣ax=2x+4,解得:x=,∵分式方程有整数解且a是整数∴a+2=±1、±2、±4、±8,即a=﹣1、﹣3、0、﹣4、2、﹣6、6、﹣10,又∵x=≠﹣2,∴a≠﹣6,由a<﹣3得:a=﹣10或﹣4,∴所有满足条件的a的和是﹣14,故选:A.【点睛】本题主要考查含参数的分式方程和一元一次不等式组的综合,熟练掌握分式方程和一元一次不等式组的解法,是解题的关键,特别注意,要检验分式方程的增根.10、D【分析】先移项然后通过因式分解法解一元二次方程即可.【详解】或故选:D.【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据∠A的余弦值列出比例式即可求出AC的长.【详解】解:在Rt△ABC中,,∴AC=故答案为1.【点睛】此题考查是已知一个角的余弦值,求直角三角形的边长,掌握余弦的定义是解决此题的关键.12、①②④.【解析】①∵AB是⊙O的直径,弦CD⊥AB,∴,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED,故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2,故②正确;③∵AF=1,FG=2,∴AG==,∴在Rt△AGD中,tan∠ADG==,∴tan∠E=,故③错误;④∵DF=DG+FG=6,AD==,∴S△ADF=DF•AG=×6×,∵△ADF∽△AED,∴,∴=,∴S△AED=,∴S△DEF=S△AED﹣S△ADF=;故④正确.故答案为①②④.13、【分析】根据“总售价=每棵的售价×棵数”列方程即可.【详解】解:根据题意可得:故答案为:.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.14、1.【分析】利用垂径定理和中位线的性质即可求解.【详解】∵OC⊥AP,OD⊥PB,∴由垂径定理得:AC=PC,PD=BD,∴CD是△APB的中位线,∴CD=AB=×8=1.故答案为115、x>1【详解】解:依题意可得,解得,所以函数的自变量的取值范围是16、1【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3,=-5∴-3-(-5)=1故答案为1.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠0),则有:,是解答本题的关键.17、1【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值为1.故答案为1.【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.18、1【分析】根据二次函数的定义得到且,然后解不等式和方程即可得到的值.【详解】∵函数是关于的二次函数,
∴且,解方程得:或(舍去),
∴.
故答案为:1.【点睛】本题考查二次函数的定义,关键是掌握二次函数的定义:一般地,形如(是常数,)的函数,叫做二次函数.三、解答题(共66分)19、(1)见解析;(2)π.【分析】(1)分别作出点、绕点按顺时针方向旋转得到的对应点,再顺次连接可得;(2)根据扇形的面积公式列式计算可得.【详解】(1)解:如图所示:△AB′C′即为所求(2)解:∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π【点睛】本题主要考查作图以及旋转变换,解题的关键是根据旋转的性质作出变换后的对应点及扇形的面积公式.20、(1)x=1;(2)y=﹣x2+2x+2;(3)2<k≤5或k=1;(4)2≤k<或k<2【分析】(1)根据二次函数y=ax2﹣2ax+k(a、k为常数,a≠2)即可求此二次函数的对称轴;(2)当a=﹣1时,把B(2,2)代入即可求此二次函数的关系式;(3)当a=﹣1时,根据二次函数的图象与线段AB只有一个公共点,分三种情况说明:当抛物线顶点落在AB上时,k+1=2,k=1;当抛物线经过点B时,k=2;当抛物线经过点A时,k=5,即可求此k的取值范围;(4)当k=a+3,根据题意画出图形,观察图形即可求此k的取值范围.【详解】解:(1)二次函数y=ax2﹣2ax+k(a、k为常数,a≠2),二次函数的图象的对称轴是直线x=1.故答案为x=1;(2)当a=﹣1时,y=﹣x2+2x+k把B(2,2)代入,得k=2,∴y=﹣x2+2x+2(3)当a=﹣1时,y=﹣x2+2x+k=﹣(x﹣1)2+k+1∵此二次函数的图象与线段AB只有一个公共点,当抛物线顶点落在AB上时,k+1=2,k=1当抛物线经过点B时,k=2当抛物线经过点A时,﹣1﹣2+k=2,k=5综上所述:2<k≤5或k=1;(4)当k=a+3时,y=ax2﹣2ax+a+3=a(x﹣1)2+3所以顶点坐标为(1,3)∴a+3<3∴a<2.如图,过点A作x轴的垂线交x轴于点P,过点B作x轴的垂线交x轴于点Q,∴P(﹣1,2),Q(2,2)当﹣1<x<2,此二次函数图象与四边形APQB的边交点个数是大于2的偶数,当抛物线过点P时,a+2a+a+3=2,解得a=﹣∴k=a+3=,当抛物线经过点B时,4a﹣4a+a+3=2,解得a=﹣1,∴k=2,当抛物线经过点Q时,4a﹣4a+a+3=2,解得a=﹣3,∴k=2综上所述:2≤k<或k<2.【点睛】本题考查了二次函数与系数的关系,解决本题的关键是综合运用一元一次不等式组的整数解、二次函数图象上的点的坐标特征、抛物线与xx轴的交点.21、(1)12海里;(2)该货船无触礁危险,理由见解析【分析】(1)证出∠BAC=∠ACB,得出BC=AB=24×=12即可;(2)过点C作CD⊥AD于点D,分别在Rt△CBD、Rt△CAD中解直角三角形,可先求得BD的长,然后得出CD的长,从而再将CD与9比较,若大于9则无危险,否则有危险.【详解】解:(1)由题意得:∠BAC=90°﹣10°=30°,∠MBC=90°﹣30°=10°,∵∠MBC=∠BAC+∠ACB,∴∠ACB=∠MBC﹣∠BAC=30°,∴∠BAC=∠ACB,∴BC=AB=24×=12(海里);(2)该货船无触礁危险,理由如下:过点C作CD⊥AD于点D,如图所示:∵∠EAC=10°,∠FBC=30°,∴∠CAB=30°,∠CBD=10°.∴在Rt△CBD中,CD=BD,BC=2BD,由(1)知BC=AB,∴AB=2BD.在Rt△CAD中,AD=CD=3BD=AB+BD=12+BD,∴BD=1.∴CD=1.∵1>9,∴货船继续向正东方向行驶无触礁危险.【点睛】本题考查解直角三角形的应用-方向角问题、等腰三角形的判定与性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22、概率为.【分析】选择用列表法求解,先列出随机选择一个家长和一个孩子的所有可能的结果,再看两人恰好是同一个家庭的结果,利用概率公式求解即可.【详解】依题意列表得:孩子家长abcdA(A,a)(A,b)(A,c)(A,d)B(B,a)(B,b)(B,c)(B,d)C(C,a)(C,b)(C,c)(C,d)D(D,a)(D,b)(D,c)(D,d)由上表可得,共有16种结果,每种结果出现的可能性相同,选中的两个人刚好是一个家庭的有4组:(A,a)、(B,b)、(C,c)、(D,d)故所求的概率为.【点睛】本题考查了用列举法求概率,根据题意列出所有可能的结果是解题关键.23、x1=1,x2=﹣1【分析】先利用乘法分配律将括号外面的分配到括号里面,再通过移项化成一元二次方程的标准形式,利用提取公因式即可得出结果.【详解】解:方程移项得:(x+1)﹣x(x+1)=0,分解因式得:(x+1)(1﹣x)=0,解得:x1=1,x2=﹣1.【点睛】本题主要考查的是一元二次方程的解法,一元二次方程的解法主要包括:提取公因式,公式法,十字相乘等.24、(1);(2)见解析;(3)见解析【分析】(1)根据已知条件先求出CE的长,再证明,在Rt△CHE中解三角形可求得EH的长,最后利用勾股定理求CH的长;(2)证明,进而得出结果;(3)由(2)得,进而,即,再结合,可得出,进一步得出结果.【详解】(1)解:∵矩形,,∴.而,,∴,又∵,,∴,易得.∴,∴.∴.(2)证明:∵矩形,,∴,而,∴,∴,∴;(3)证明:由(2)得,∴,即,而,∴,∴.【点睛】本题主要考查相似三角形的判定与性质以及解直角三角形,关键是掌握基本的概念与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铝塑窗施工合同植物园新建
- 环境保护数据统计管理办法
- 城市排水系统项目招投标预审
- 2024危险品运输合作协议
- 洗浴中心营业时间公告
- 湖州市物业广告与商业活动管理
- 上海市篮球馆停车场运营策略
- 教育评价履约评价管理办法
- 健身房清洁工劳动合同
- 大型旅游设施建设植筋合同
- 山东省青岛市即墨区2023-2024学年九年级上学期期中英语试卷
- 幼儿园大班语言:《跑跑镇》 课件
- 村(居)民房屋翻建(新建)申请表
- 平安校园建设关于动态防范清理低谷有害信息和不规范的app方案
- 旅行社经营管理教案
- 苏州大学操作系统习题集(大学期末复习资料)
- 教学信息技术 2.0对小学音乐课堂的意义
- (完整版)高中英语语法填空专练-时态语态
- 锂-危险化学品安全周知卡
- 园林建筑设计与施工第二章-园林建筑设计的基本原课件
- 幼儿园中班美术《制作汽车》课件
评论
0/150
提交评论