版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025八年级上册数数学(RJ)12.2第2课时“边角边”第十二章全等三角形教学备注配套PPT教学备注配套PPT讲授1.情景引入(见幻灯片3-4)2.探究点1新知讲授(见幻灯片5-13)第2课时“边角边”学习目标:1.掌握三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.3.能运用“SAS”证明简单的三角形全等问题.重点:掌握一般三角形全等的判定方法SAS.难点:运用全等三角形的判定方法解决证明线段或角相等的问题.课堂探究课堂探究要点探究探究点1:三角形全等的判定定理2--“边角边”问题:两个三角形的两边和一角分别相等有几种情形?列举说明.ABC活动:先任意画出一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠AABC追问1:你是如何使∠A’=∠A的?结合这个问题,给出画△A’B’C’的方法.追问2:回忆作图过程,这两个三角形全等是满足哪三个条件?要点归纳:相等的两个三角形全等(简称“边角边”或“SAS”).几何语言:如图,如果
典例精析教学备注3.探究点2新知讲授(见幻灯片14-16)例1:【教材变式】已知:如图,AB=CB,∠1=∠2.求证:(1)AD=CD;教学备注3.探究点2新知讲授(见幻灯片14-16)变式:已知:AD=CD,DB平分∠ADC,求证:∠A=∠C.例2:如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?方法总结:证明线段相等或者角相等时,常常通过证明它们是全等三角形的对应边或对应角来解决.针对训练如图,点E、F在AC上,AD//BC,AD=CB,AE=CF.求证:△AFD≌△CEB.探究点2:“边边角”不能作为判定三角形全等的依据做一做:如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?画一画:画△ABC和△DEF,使∠B=∠E=30°,AB=DE=5cm,AC=DF=3cm.观察所得的两个三角形是否全等?把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?要点归纳:有两边和其中一边的对角分别相等的两个三角形_________全等.典例精析教学备注配套PPT讲授4.课堂小结5.当堂检测(见幻灯片17-24)例2教学备注配套PPT讲授4.课堂小结5.当堂检测(见幻灯片17-24)A.AB=DE,∠B=∠E,BC=EFB.AB=DE,∠A=∠D,AC=DFC.BC=EF,∠B=∠E,AC=DFD.BC=EF,∠C=∠F,AC=DF方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA时是不能判定三角形全等的.针对训练如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是()A.AB∥CDB.AD∥BCC.∠A=∠CD.∠ABC=∠CDA二、课堂小结全等三角形判定定理2简称图示符号语言有两边及夹角对应相等的两个三角形全等“边角边”或“SAS”∴△ABC≌△A1B1C1(SAS).注意:“一角”指的是两边的夹角.当堂检测当堂检测1.在下列图中找出全等三角形进行连线.2.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增加的条件是()A.∠A=∠DB.∠E=∠CC.∠A=∠CD.∠ABD=∠EBC
3.已知:如图2,AB=DB,CB=EB,∠1=∠2,教学备注配套PPT讲授求证:∠A=∠教学备注配套PPT讲授4.已知:如图,AB=AC,AD是△ABC的角平分线,求证:BD=CD.【变式1】已知:如图,AB=AC,BD=CD,求证:∠BAD=∠CAD.【变式2】已知:如图,AB=AC,BD=CD,E为AD上一点,求证:BE=CE.拓展提升5.如图,已知CA=CB,AD=BD,M,N分别是CA,CB的中点,求证:DM=DN.第十二章全等三角形教学备注学生在课前完成自主学习部分12.2全等三角形的判定教学备注学生在课前完成自主学习部分第3课时“角边角”和“角角边”学习目标:1.了解1.探索三角形全等的“角边角”和“角角边”的条件2.应用“角边角”和“角角边”证明两个三角形全等,进而证线段或角相等.重点:已知两角一边的三角形全等探究.难点:理解,掌握三角形全等的条件:“ASA”“AAS”.自主学习自主学习一、知识链接1.能够的两个三角形叫做全等三角形.2.判定两个三角形全等方法有哪些?
边边边:对应相等的两个三角形全等.边角边:和它们的对应相等的两个三角形全等.
二、新知预习在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?2.现实情境一张教学用的三角板硬纸不小心被撕坏了,如图:你能制作一张与原来同样大小的新道具吗?能恢复原来三角形的原貌吗?以①为模板,画一画,能还原吗?以②为模板,画一画,能还原吗?以③为模板,画一画,能还原吗?第③块中,三角形的边角六个元素中,固定不变的元素是_____________.猜想:两角及夹边对应相等的两个三角形_______.三、我的疑惑______________________________________________________________________________________________________________________________________________________
教学备注配套PPT讲授1.情景引入教学备注配套PPT讲授1.情景引入(见幻灯片3)2.探究点1新知讲授(见幻灯片4-9)课堂探究要点探究探究点1:三角形全等的判定定理3--“角边角”ABC活动:先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB,∠AABC要点归纳:相等的两个三角形全等(简称“角边角”或“ASA”).几何语言:如图,在△ABC和△DEF中,∴△ABC≌△DEF.典例精析例1:如图,已知:∠ABC=∠DCB,∠ACB=∠DBC,求证:△ABC≌△DCB.例2:如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:AD=AE.方法总结:证明线段或角度相等,可先证两个三角形全等,利用对应边或对应角相等来解决.针对训练如图,AD∥BC,BE∥DF,AE=CF,求证:△ADF≌△CBE.
探究点2:三角形全等的判定定理3的推论--“角角边”做一做:已知一个三角形的两个内角分别是60°和45°,且45°所对的边的边长为3cm,你能画出这个三角形吗?追问:这里的条件与“角边角”中的条件有什么相同点与不同点?你能将它转化为“角边角”中的条件吗?教学备注教学备注3.探究点2新知讲授(见幻灯片10-15)要点归纳:相等的两个三角形全等(简称“角角边”或“AAS”).几何语言:如图,在△ABC和△DEF中,∴△ABC≌△DEF.典例精析例3:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.例4:如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;(2)DE=BD+CE.方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.针对训练如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()
二、课堂小结全等三角形判定定理3简称图示符号语言有两角及夹边(或一角的对边)对应相等的两个三角形全等“角边角”(ASA)或“角角边”(AAS)∴△ABC≌△A1B1C1(ASA).推论:“角角边”是利用三角形内角和定理转化成“角边角”来证明两个三角形全等.当堂检测教学备注配套PPT当堂检测教学备注配套PPT讲授4.课堂小结5.当堂检测(见幻灯片16-22)1.△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,则下列补充的条件中错误的是()A.AC=DFB.BC=EFC.∠A=∠DD.∠C=∠F2.在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69°,∠A′=44°,且AC=A′C′,那么这两个三角形()A.一定不全等B.一定全等C.不一定全等D.以上都不对3.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形是否全等,并说明理由.4.如图∠ACB=∠DFE,BC=EF,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑合同范本填写
- 香熏合同范本
- 2023年文山州富宁县研究室考察调(流)动工作人员笔试真题
- 2023年山东第一医科大学附属省立医院(山东省立医院)招聘笔试真题
- 耕地征用合同范本
- 摩托车订单转让合同范本
- 通州工商合同范本
- 钾钠长石粉销售合同范本
- 省内旅游合同范本
- 西点加盟合同范本
- 崔允漷《有效教学》心得体会课件
- 病案编码员资格证理论考试145题(附答案)
- 办公室工作分工安排表
- 大班美术活动教案:创意水墨《江南水乡》
- 21秋国家开放大学《公共部门人力资源管理》单元自测题参考答案
- ICU病人转入和转出制度
- GB/T 18916.64-2022取水定额第64部分:建筑卫生陶瓷
- 红色绘本革命故事《闪闪的红星》
- 八年级历史上册材料题集锦(含答案)
- 国开电大2022年《小学数学教学研究》形考任务1-4答
- 工件的定位夹紧与夹具
评论
0/150
提交评论