版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东滨州无棣县数学九上期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.方程x(x﹣5)=x的解是()A.x=0
B.x=0或x=5
C.x=6 D.x=0或x=62.已知点A(﹣1,﹣1),点B(1,1),若抛物线y=x2﹣ax+a+1与线段AB有两个不同的交点(包含线段AB端点),则实数a的取值范围是()A.≤a<﹣1 B.≤a≤﹣1 C.<a<﹣1 D.<a≤﹣13.如图(1)所示,为矩形的边上一点,动点,同时从点出发,点沿折线运动到点时停止,点沿运动到点时停止,它们运动的速度都是秒,设、同时出发秒时,的面积为.已知与的函数关系图象如图(2)(曲线为抛物线的一部分)则下列结论正确的是()图(1)图(2)A. B.当是等边三角形时,秒C.当时,秒 D.当的面积为时,的值是或秒4.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A.4 B.6 C.9 D.125.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC6.如图,一次函数y=ax+a和二次函数y=ax2的大致图象在同一直角坐标系中可能的是()A. B.C. D.7.抛物线y=﹣x2+1向右平移2个单位长度,再向下平移3个长度单位得到的抛物线解析式是()A.y=﹣(x﹣2)2+4 B.y=﹣(x﹣2)2﹣2C.y=﹣(x+2)2+4 D.y=﹣(x+2)2﹣28.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得()A. B. C. D.9.主视图、左视图、俯视图分别为下列三个图形的物体是()A. B. C. D.10.如图,的半径弦于点,连结并延长交于点,连结.若,,则的长为()A.5 B. C. D.二、填空题(每小题3分,共24分)11.比较sin30°、sin45°的大小,并用“<”连接为_____.12.将二次函数y=2x2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.13.将抛物向右平移个单位,得到新的解析式为___________.14.如图,矩形ABCD的顶点A、B在x轴的正半轴上,反比例函数y=(k≠0)在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值_____.15.如图,点是函数图象上的一点,连接,交函数的图象于点,点是轴上的一点,且,则的面积为_________.16.如图,在反比例函数的图象上有点它们的横坐标依次为2,4,6,8,10,分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为则点的坐标为________,阴影部分的面积________.17.在一个不透明的布袋里装有若干个只有颜色不同的红球和白球,其中有3个红球,且从布袋中随机摸出1个球是红球的概率是三分之一,则白球的个数是______18.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体最少是由________个正方体搭成的。三、解答题(共66分)19.(10分)如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.(1)求证:△AEH≌△CGF.(2)若∠EFG=90°.求证:四边形EFGH是正方形.20.(6分)在一个不透明的盒子里装有黑、白两种颜色的球共50个,这些球除颜色外其余完全相同.王颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是试验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024806001800摸到白球的频率0.650.620.5930.6040.60.60.6(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为;(3)试估算盒子里黑、白两种颜色的球各有多少个?21.(6分)已知抛物线C1的解析式为y=-x2+bx+c,C1经过A(-2,5)、B(1,2)两点.(1)求b、c的值;(2)若一条抛物线与抛物线C1都经过A、B两点,且开口方向相同,称两抛物线是“兄弟抛物线”,请直接写出C1的一条“兄弟抛物线”的解析式.22.(8分)如图,破残的圆形轮片上,弦的垂直平分线交于点,交弦于点.已知cm,cm.(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.23.(8分)已知为的外接圆,点是的内心,的延长线交于点,交于点.(1)如图1,求证:.(2)如图2,为的直径.若,求的长.24.(8分)如图,已知直线与轴交于点,与反比例函数的图象交于,两点,的面积为.(1)求一次函数的解析式;(2)求点坐标和反比例函数的解析式.25.(10分)如图,大圆的弦AB、AC分别切小圆于点M、N.(1)求证:AB=AC;(2)若AB=8,求圆环的面积.26.(10分)沙坪坝正在创建全国文明城市,其中垃圾分类是一项重要的举措.现随机抽查了沙区部分小区住户12月份某周内“垃圾分类”的实施情况,并绘制成了以下两幅不完整的统计图,图中表示实施天数小于5天,表示实施天数等于5天,表示实施天数等于6天,表示实施天数等于7天.(1)求被抽查的总户数;(2)补全条形统计图;(3)求扇形统计图中的圆心角的度数.
参考答案一、选择题(每小题3分,共30分)1、D【分析】先移项,然后利用因式分解法解方程.【详解】解:x(x﹣5)﹣x=0,x(x﹣5﹣1)=0,x=0或x﹣5﹣1=0,∴x1=0或x2=1.故选:D.【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).2、A【分析】根据题意,先将一次函数解析式和二次函数解析式联立方程,求出使得这个方程有两个不同的实数根时a的取值范围,然后再求得抛物y=x2﹣ax+a+1经过A点时的a的值,即可求得a的取值范围.【详解】解:∵点A(﹣1,﹣1),点B(1,1),∴直线AB为y=x,令x=x2﹣ax+a+1,则x2﹣(a+1)x+a+1=0,若直线y=x与抛物线x2﹣ax+a+1有两个不同的交点,则△=(a+1)2﹣4(a+1)>0,解得,a>3(舍去)或a<﹣1,把点A(﹣1,﹣1)代入y=x2﹣ax+a+1解得a=﹣,由上可得﹣≤a<﹣1,故选:A.【点睛】本题考查二次函数图象与系数的关系、二次函数的性质、一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.3、D【分析】先根据图象信息求出AB、BE、BE、AE、ED,A、直接求出比,B、先判断出∠EBC≠60°,从而得出点P可能在ED上时,△PBQ是等边三角形,但必须是AD的中点,而AE>ED,所以点P不可能到AD中点的位置,故△PBQ不可能是等边三角形;C、利用相似三角形性质列出方程解决,分两种情况讨论计算即可,D、分点P在BE上和点P在CD上两种情况计算即可.【详解】由图象可知,AD=BC=BE=5,CD=AB=4,AE=3,DE=2,A、∴AB:AD=5:4,故A错误,B、∵tan∠ABE=,∴∠ABE≠30°∴∠PBQ≠60°,∴点P在ED时,有可能△PBQ是等边三角形,∵BE=BC,∴点P到点E时,点Q到点C,∴点P在线段AD中点时,有可能△PBQ是等边三角形,∵AE>DE,∴点P不可能到AD的中点,∴△PBQ不可能是等边三角形,故B错误,C、∵△ABE∽△QBP,∴点E只有在CD上,且满足,∴,∴CP=.∴t=(BE+ED+DQ)÷1=5+2+(4−)=.故C错误,D、①如图(1)在Rt△ABE中,AB=4,BE=5sin∠AEB=,∴sin∠CBE=∵BP=t,∴PG=BPsin∠CBE=t,∴S△BPQ=BQ×PG=×t×t=t2=4,∴t=−(舍)或t=,②当点P在CD上时,S△BPQ=×BC×PC=×5×(5+2+4−t)=×(11−t)=4,∴t=,∴当△BPQ的面积为4cm2时,t的值是或秒,故D正确,故选:D.【点睛】此题是二次函数综合题,主要考查动点问题的函数图象、矩形的性质、三角形的面积公式等知识.解题的关键是读懂图象信息求出相应的线段,学会转化的思想,把问题转化为方程的思想解决,属于中考常考题型..4、D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.5、C【解析】根据旋转的性质得,∠ABD=∠CBE=60°,∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.6、B【分析】根据a的符号分类,当a>0时,在A、B中判断一次函数的图象是否相符;当a<0时,在C、D中判断一次函数的图象是否相符.【详解】解:①当a>0时,二次函数y=ax2的开口向上,一次函数y=ax+a的图象经过第一、二、三象限,A错误,B正确;②当a<0时,二次函数y=ax2的开口向下,一次函数y=ax+a的图象经过第二、三、四象限,C错误,D错误.故选:B.【点睛】此题主要考查了二次函数与一次函数的图象,利用二次函数的图象和一次函数的图象的特点求解.7、B【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,将抛物线y=﹣x2+1向右平移2个单位长度所得的抛物线的解析式为:y=﹣(x﹣2)2+1.再向下平移3个单位长度所得抛物线的解析式为:y=﹣(x﹣2)2﹣2.故选:B.【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a(x-h)2+k
(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.8、B【分析】等量关系为:2016年贫困人口年贫困人口,把相关数值代入计算即可.【详解】解:设这两年全省贫困人口的年平均下降率为,根据题意得:,故选B.【点睛】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键.9、A【解析】分析:本题时给出三视图,利用空间想象力得出立体图形,可以先从主视图进行排除.解析:通过给出的主视图,只有A选项符合条件.故选A.10、C【分析】连接BE,设⊙O的半径为r,然后由垂径定理和勾股定理列方程求出半径r,最后由勾股定理依次求BE和EC的长即可.【详解】解:如图:连接BE设⊙O的半径为r,则OA=OD=r,OC=r-2∵OD⊥AB,∴∠ACO=90°∴AC=BC=AB=4,在Rt△ACO中,由勾股定理得:r2-42=(r-2)2,解得:r=5∴AE=2r=10,∵AE为⊙O的直径∴∠ABE=90°由勾股定理得:BE==6在Rt△ECB中,EC=.故答案为C.【点睛】本题主要考查了垂径定理和勾股定理,根据题意正确作出辅助线、构造出直角三角形并利用勾股定理求解是解答本题的关键.二、填空题(每小题3分,共24分)11、<.【解析】直接利用特殊角的三角函数值代入求出答案.【详解】解:∵sin30°=12、sin45°=22,
∴sin30°<sin45°.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.12、y=2(x-2)2+3【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,
故答案为:y=2(x-2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.13、y=2(x-3)2+1【分析】利用抛物线的顶点坐标为(0,1),利用点平移的坐标变换规律得到平移后得到对应点的坐标为(3,1),然后根据顶点式写出新抛物线的解析式.【详解】解:∵
,
∴抛物线
的顶点坐标为
(0,1),把点
(0,1)
向右平移
3
个单位后得到对应点的坐标为
(3,1)
,
∴新抛物线的解析式为y=2(x-3)2+1.
故答案为y=2(x-3)2+1.【点睛】本题考查二次函数图象与几何变换,配方法,关键是先利用配方法得到抛物线的顶点坐标.14、1【解析】由tan∠AOD=,可设AD=1a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.【详解】解:∵tan∠AOD==,∴设AD=1a、OA=4a,则BC=AD=1a,点D坐标为(4a,1a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数经过点D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),∴D(2,)则k=2×=1.故答案为1.【点睛】本题考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.15、4【分析】作AE⊥x轴于点E,BD⊥x轴于点D得出△OBD∽△OAE,根据面积比等于相似比的平方结合反比例函数的几何意义求出,再利用条件“AO=AC”得出,进而分别求出和相减即可得出答案.【详解】作AE⊥x轴于点E,BD⊥x轴于点D∴△OBD∽△OAE∴根据反比例函数的几何意义可得:,∴∵AO=AC∴OE=EC∴∴,∴故答案为4.【点睛】本题考查的是反比例函数与几何的综合,难度系数较大,需要熟练掌握反比例函数的几何意义.16、(2,10)16【分析】将点P1的横坐标2代入函数表达式即可求出点P1纵坐标,将右边三个矩形平移,如图所示,可得出所求阴影部分面积之和等于矩形ABCP1的面积,求出即可.【详解】解:因为点P1的横坐标为2,代入,得y=10,∴点P1的坐标为(2,10),将右边三个矩形平移,如图所示,
把x=10代入反比例函数解析式得:y=2,∴由题意得:P1C=AB=10-2=8,
则S1+S2+S3+S4=S矩形ABCP1=2×8=16,
故答案为:(2,10),16.【点睛】此题考查了反比例函数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.17、6【分析】设白球的个数是x个,根据列出算式,求出x的值即可.【详解】解:设白球的个数是x个,根据题意得:解得:x=6.故答案为6.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.18、【分析】易得这个几何体共有3层,由俯视图可得第一层立方体的个数,由主视图可得第二层、第三层立方体最少的个数,相加即可.【详解】结合主视图和俯视图可知,第一层、第二层最少各层最少1个,第三层一定有3个,∴组成这个几何体的小正方体的个数最少是1个,故答案为:1.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【分析】(1)根据全等三角形的判定定理SAS证得结论;(2)先证明四边形EFGH是平行四边形,再证明有一组邻边相等,然后结合∠EFG=90°,即可证得该平行四边形是正方形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C.在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠B=∠D.∵AE=CG,AH=CF,∴EB=DG,HD=BF.∴△BEF≌△DGH(SAS),∴EF=HG.又∵△AEH≌△CGF,∴EH=GF.∴四边形HEFG为平行四边形.∴EH∥FG,∴∠HEG=∠FGE.∵EG平分∠HEF,∴∠HEG=∠FEG,∴∠FGE=∠FEG,∴EF=GF,∴平行四边形EFGH是菱形.又∵∠EFG=90°,∴平行四边形EFGH是正方形.【点睛】本题主要考查了四边形的综合性问题,关键要注意正方形和菱形的性质定理,结合考虑三角形的全等的证明,这是中考的必考点,必须熟练掌握.20、(1)0.6;(2)0.6;(3)盒子里黑颜色的球有20只,盒子白颜色的球有30只【分析】(1)观察表格找到逐渐稳定到的常数即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数,问题得解.【详解】(1)∵摸到白球的频率约为0.6,∴当n很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)∵摸到白球的频率为0.6,∴若从盒子里随机摸出一只球,则摸到白球的概率的估计值为0.6;(3)黑白球共有20只,白球为:50×0.6=30(只),黑球为:50﹣30=20(只).答:盒子里黑颜色的球有20只,盒子白颜色的球有30只.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.21、(1)b=-2,c=5;(2)(答案不唯一).【分析】(1)直接把点代入,求出的值即可得出抛物线的解析式;(2)根据题意,设“兄弟抛物线”的解析式为:,直接把点代入即可求得答案.【详解】(1)∵在C1上,∴,解得:.(2)根据“兄弟抛物线”的定义,知:“兄弟抛物线”经过A(-2,5)、B(1,2)两点,且开口方向相同,∴设“兄弟抛物线”的解析式为:,∵在“兄弟抛物线”上,∴,解得:.∴另一条“兄弟抛物线”的解析式为:.【点睛】本题主要考查了待定系数法求二次函数,正确理解题意,明确“兄弟抛物线”的定义是解题的关键.22、(1)作图见解析;(2)(1)作图见解析;(2)cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=cm,故半径为:cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.23、(1)证明见解析;(2)【分析】(1)连接半径,根据内心的性质、圆的基本性质以及三角形外角的性质求得,即可得证结论;(2)连接半径,由为的直径、点是的内心以及等腰三角形的三线合一可得、,然后依次解、即可得出结论.【详解】解:(1)证明:连接,如图:∵是的内心∴,∵∴∴∵∴(2)连接,如图:∵是直径,平分∴且∵,,∴在中,∴∴∵∴∴在中,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工商银行借款合同
- 2024年视力保健用品项目评估分析报告
- 2024至2030年中国大便阀接牙行业投资前景及策略咨询研究报告
- 2024至2030年中国防水式活动法兰热电阻行业投资前景及策略咨询研究报告
- 2024至2030年中国白麻板材数据监测研究报告
- 2024至2030年中国喷砂抛光珠数据监测研究报告
- 近代自然科学(19世纪前后)
- 湖南省邵阳市(2024年-2025年小学五年级语文)统编版竞赛题(上学期)试卷及答案
- 中医药治疗房颤
- 传媒账号签约合同模板
- 2024年学校柔性引进专家聘用合同
- 医学专题-4双相障碍
- 脑出血一病一品
- 甲状腺消融术护理查房
- 人工智能大学生生涯规划
- 中医生活起居护理-疏仁丽
- 2024年甘肃省普通高中信息技术会考试题(含24套)
- 外贸公司管理制度
- 庄园推广策划方案
- 子路曾皙冉有公西华侍坐教案
- 《冬季鸡舍通风》课件
评论
0/150
提交评论