版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省恩施土家族苗族自治州恩施市2025届数学九上期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.一种商品原价元,经过两次降价后每盒26元,设两次降价的百分率都为,则满足等式()A. B. C. D.2.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+33.若关于的方程有两个相等的实数根,则的值是()A.-1 B.-3 C.3 D.64.如图,A为反比例函数y=的图象上一点,AB垂直x轴于B,若S△AOB=2,则k的值为()A.4 B.2 C.﹣2 D.15.若,面积之比为,则相似比为()A. B. C. D.6.如果,两点都在反比例函数的图象上,那么与的大小关系是()A. B. C. D.7.如图,点,分别在反比例函数,的图象上.若,,则的值为()A. B. C. D.8.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小.A.1 B.2 C.3 D.49.剪纸是中国特有的民间艺术.在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A. B. C. D.10.如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()A. B.1.5 C.2 D.2.5二、填空题(每小题3分,共24分)11.计算:sin30°=_____.12.如图,点A、B分别在反比例函数y=(k1>0)和y=(k2<0)的图象上,连接AB交y轴于点P,且点A与点B关于P成中心对称.若△AOB的面积为4,则k1-k2=______.13.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.14.四边形为的内接四边形,为的直径,为延长线上一点,为的切线,若,则_________.若,则__________.15.如图,在中,则AB的长为________(用含α和b的代数式表示)16.已知关于x的一元二次方程(k-1)x2+x+k2-1=0有一个根为0,则k的值为________.17.在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,若AE=2,△ADE的面积为4,四边形BCED的面积为5,则边AB的长为________.18.如图,C、D是AB为直径的半圆O上的点,若∠BAD=50°,则∠BCD=_____.三、解答题(共66分)19.(10分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF,从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51)20.(6分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用26m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设BC=xm.(1)若矩形花园ABCD的面积为165m2,求x的值;(2)若在P处有一棵树,树中心P与墙CD,AD的距离分别是13m和6m,要将这棵树围在花园内(考虑到树以后的生长,篱笆围矩形ABCD时,需将以P为圆心,1为半径的圆形区域围在内),求矩形花园ABCD面积S的最大值.21.(6分)现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64m的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3m处达到最高,高度为1m.(1)求喷灌出的圆形区域的半径;(2)在边长为16m的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)22.(8分)我们把对角线互相垂直的四边形叫做垂直四边形.(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.23.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.24.(8分)计算:(1)(2)解方程:25.(10分)如图,在中,,点E在边BC上移动(点E不与点B、C重合),满足,且点D、F分别在边AB、AC上.(1)求证:;(2)当点E移动到BC的中点时,求证:FE平分.26.(10分)如图,在正方形ABCD中,,点E为对角线AC上一动点(点E不与点A、C重合),连接DE,过点E作,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求AC的长;(2)求证矩形DEFG是正方形;(3)探究:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】等量关系为:原价×(1-下降率)2=26,把相关数值代入即可.【详解】解:第一次降价后的价格为45(1-x),
第二次降价后的价格为45(1-x)·(1-x)=45(1-x)2,
∴列的方程为45(1-x)2=26,
故选:C.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.2、A【解析】分析:直接利用二次函数图象与几何变换的性质分别平移得出答案.详解:将抛物线y=-5x2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=-5(x+1)2-1.故选A.点睛:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.3、C【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求解即可.【详解】∵关于的方程有两个相等的实数根,
∴,
解得:.故选:C.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4、A【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【详解】由于点A是反比例函数图象上一点,则S△AOB=|k|=2;
又由于函数图象位于一、三象限,则k=4.
故选A.【点睛】本题考查反比例函数系数k的几何意义,解题的关键是掌握反比例函数系数k的几何意义.5、C【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【详解】解:∵两个相似三角形的面积比为9:4,
∴它们的相似比为3:1.
故选:C.【点睛】此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.6、C【分析】直接把点A(1,y1),B(3,y1)两点代入反比例函数中,求出y1与y1的值,再比较其大小即可.【详解】解:∵A(1,y1),B(3,y1)两点都在反比例函数的图象上;∴y1>y1.
故选:C.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7、A【分析】分别过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,根据点A所在的图象可设点A的坐标为(),根据相似三角形的判定证出△BDO∽△OCA,列出比例式即可求出点B的坐标,然后代入中即可求出的值.【详解】解:分别过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∵点在反比例函数,设点A的坐标为(),则OC=x,AC=,∴∠BDO=∠OCA=90°∵∴∠BOD+∠AOC=180°-∠AOB=90°,∠OAC+∠AOC=90°∴∠BOD=∠OAC∴△BDO∽△OCA∴解得:OD=2AC=,BD=2OC=2x,∵点B在第二象限∴点B的坐标为()将点B坐标代入中,解得故选A.【点睛】此题考查的是求反比例函数解析式相似三角形的判定及性质,掌握用待定系数法求反比例函数的解析式和构造相似三角形的方法是解决此题的关键.8、C【分析】根据等量关系“四边形APQC的面积=三角形ABC的面积-三角形PBQ的面积”列出函数关系求最小值.【详解】解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:S=S△ABC-S△PBQ=×12×6-(6-t)×2t=t2-6t+36=(t-3)2+1.∴当t=3s时,S取得最小值.故选C.【点睛】本题考查了函数关系式的求法以及最值的求法,解题的关键是根据题意列出函数关系式,并根据二次函数的性质求出最值.9、C【解析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【详解】A.此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误;B.此图形沿一条直线对折后能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误。C.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180∘能与原图形重合,是中心对称图形,故此选项正确;D.此图形沿一条直线对折后能够完全重合,旋转180°不能与原图形重合,∴此图形是轴对称图形,不是中心对称图形,故此选项错误。故选C【点睛】此题考查轴对称图形和中心对称图形,难度不大10、B【分析】本题考查的是扇形面积,圆心角之和等于五边形的内角和,由于半径相同,那么根据扇形的面积公式计算即可.【详解】图中五个扇形(阴影部分)的面积是,故选B.二、填空题(每小题3分,共24分)11、1【解析】根据sin30°=12【详解】sin30°=12【点睛】本题考查的知识点是特殊角的三角函数值,解题的关键是熟练的掌握特殊角的三角函数值.12、1【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,先证明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代换和k的几何意义得到=S△AOC+S△BOD=×|k1|+|k2|=4,然后利用k1<0,k2>0可得到k2-k1的值.【详解】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A与点B关于P成中心对称.
∴P点为AB的中点,
∴AP=BP,
在△ACP和△BDP中,
∴△ACP≌△BDP(AAS),
∴S△ACP=S△BDP,
∴S△AOB=S△APO+S△BPO=S△AOC+S△BOD=×|k1|+|k2|=4,∴|k1|+|k2|=1
∵k1>0,k2<0,
∴k1-k2=1.
故答案为1.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数的性质.13、(0,﹣7)【分析】根据题意得出,然后求出y的值,即可以得到与y轴的交点坐标.【详解】令,得,故与y轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y轴的交点坐标问题,掌握与y轴的交点坐标的特点()是解题的关键.14、【分析】连接OC,AC、过点A作AF⊥CE于点F,根据相似三角形的性质与判定,以及勾股定理即可求出答案.【详解】解:连接OC,
∵CE是⊙O的切线,
∴∠OCE=90°,
∵∠E=20°,
∴∠COD=70°,
∵OC=OD,∴∠ABC=180°-55°=125°,
连接AC,过点A做AF⊥CE交CE于点F,
设OC=OD=r,
∴OE=8+r,
在Rt△OEC中,
由勾股定理可知:(8+r)2=r2+122,
∴r=5,
∵OC∥AF
∴△OCE∽△AEF,故答案为:【点睛】本题考查圆的综合问题,涉及勾股定理,相似三角形的性质与判定,切线的性质等知识,需要学生灵活运用所学知识.15、.【分析】根据余弦函数的定义可解.【详解】解:根据余弦函数的定义可知,所以AB=.故答案是:.【点睛】本题考查了三角函数的定义,牢记定义是关键.三角函数的定义是本章中最重要最基础的知识点,一定要掌握.16、-1【解析】把x=0代入方程得k2-1=0,解得k=1或k=-1,而k-1≠0,所以k=-1,故答案为:-1.17、1【分析】由∠AED=∠B,∠A是公共角,根据有两角对应相等的两个三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,可得,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长.【详解】∵∠AED=∠B,∠A是公共角,∴△ADE∽△ACB,∴,∵△ADE的面积为4,四边形BCED的面积为5,∴△ABC的面积为9,∵AE=2,∴,解得:AB=1.故答案为1.【点睛】本题考查相似三角形的判定性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.18、130°【分析】根据圆周角定理和圆内接四边形的性质得出∠BAD+∠BCD=180°,代入求出即可.【详解】∵C、D是AB为直径的半圆O上的点,∴∠BAD+∠BCD=180°.∵∠BAD=50°,∴∠BCD=130°.故答案为:130°.【点睛】本题考查了圆周角定理和圆内接四边形的性质,能根据圆内接四边形的性质得出∠BAD+∠BCD=180°是解答本题的关键.三、解答题(共66分)19、隧道的长度约为.【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.【详解】解:如图,延长交于点,则.在中,,∵.∴.在中,,∵,∴.∵,∴.∴.∴.在中,,∵,∴.∴.因此,隧道的长度约为.【点睛】本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20、(1)x的值为11m或15m;(2)花园面积S的最大值为168平方米.【分析】(1)直接利用矩形面积公式结合一元二次方程的解法即可求得答案;(2)首先得到S与x的关系式,进而利用二次函数的增减性即可求得答案.【详解】(1)∵AB=xm,则BC=(26﹣x)m,∴x(26﹣x)=165,解得:x1=11,x2=15,答:x的值为11m或15m;(2)由题意可得出:S=x(26﹣x)=﹣x2+26x=﹣(x﹣13)2+169,由题意得:14≤x≤19,∵-1<0,14≤x≤19,∴S随着x的增大而减小,∴x=14时,S取到最大值为:S=﹣(14﹣13)2+169=168,答:花园面积S的最大值为168平方米.【点睛】本题考查了二次函数的应用以及一元二次方程的解法,正确结合二次函数的增减性求得最值是解题的关键.21、(1)8m;(2)不可以,水管高度调整到0.7m,理由见解析.【分析】(1)根据题意设最远的抛物线形水柱的解析式为,然后将(0,0.64)代入解析式求得a的值,然后求解析式y=0时,x的值,从而求得半径;(2)利用圆与圆的位置关系结合正方形,作出三个等圆覆盖正方形的图形,然后利用勾股定理求得圆的半径,从而使问题得解.【详解】解:(1)由题意,设最远的抛物线形水柱的解析式为,将(0,0.64)代入解析式,得解得:∴最远的抛物线形水柱的解析式为当y=0时,解得:所以喷灌出的圆形区域的半径为8m;(2)如图,三个等圆覆盖正方形设圆的半径MN=NB=ME=DE=r,则AN=16-r,,MD=,AM=16-∴在Rt△AMN中,解得:(其中,舍去)∴设最远的抛物线形水柱的解析式为,将(8.5,0)代入解得:∴当x=0时,y=∴水管高度约为0.7m时,喷灌区域恰好可以完全覆盖该绿化带【点睛】本题考查待定系数法求二次函数解析式,根据题意设抛物线为顶点式是本题的解题关键.22、(1)四边形ABCD是垂直四边形;理由见解析;(2)见解析;(3)GE=【分析】(1)由AB=AD,得出点A在线段BD的垂直平分线上,由CB=CD,得出点C在线段BD的垂直平分线上,则直线AC是线段BD的垂直平分线,即可得出结果;(2)设AC、BD交于点E,由AC⊥BD,得出∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,即可得出结论;(3)连接CG、BE,由正方形的性质得出AG=AC,AB=AE,,,∠CAG=∠BAE=90°,易求∠GAB=∠CAE,由SAS证得△GAB≌△CAE,得出∠ABG=∠AEC,推出∠ABG+∠CEB+∠ABE=90°,即CE⊥BG,得出四边形CGEB是垂直四边形,由(2)得,CG2+BE2=BC2+GE2,,,代入计算即可得出结果.【详解】(1)解:四边形ABCD是垂直四边形;理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂直四边形;(2)证明:设AC、BD交于点E,如图2所示:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得:AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,∴AD2+BC2=AB2+CD2;(3)解:连接CG、BE,如图3所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,,,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∵∠AEC+∠CEB+∠ABE=90°,∴∠ABG+∠CEB+∠ABE=90°,即CE⊥BG,∴四边形CGEB是垂直四边形,由(2)得,CG2+BE2=BC2+GE2,∵AC=4,BC=3,∴,,∴,∴GE=.【点睛】本题是四边形综合题,主要考查了正方形的性质、勾股定理、垂直平分线、垂直四边形、全等三角形的判定与性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.23、(1)证明见解析;(2).【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;
(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 直播平台主播薪资规范
- 娱乐场所安防施工合同
- 旅游信息市场管理办法
- 矿山安全设备测试管理办法
- 森林苗圃施工协议
- 建筑工程彩钢瓦施工合同
- 武汉市计划生育管理妇联行业应用
- 湿地保护中石化施工合同
- 畜牧设备租赁合同转让样本
- 城市绿化项目投标承诺:生态优先
- 2025届高考语文一轮复习:文言文概括和分析 课件
- 北京市《配电室安全管理规范》(DB11T 527-2021)地方标准
- 第七讲社会主义现代化建设的教育、科技、人才战略教学课件
- (完整版)装饰装修工程监理细则(详解)最新(精华版)
- 电焊中级工(四级)职业技能鉴定考试题库
- 氧化铝生产工艺教学(拜耳法)(课堂PPT)
- 多巴胺的药理作用及用法PPT参考幻灯片
- 钢结构网架翻新改造施工方案
- 水稻雄性不育系鉴定
- 少先队鼓号队常用鼓号曲谱
- 土方运输次数登记卡
评论
0/150
提交评论