浙江省金华义乌市2025届九年级数学第一学期期末联考试题含解析_第1页
浙江省金华义乌市2025届九年级数学第一学期期末联考试题含解析_第2页
浙江省金华义乌市2025届九年级数学第一学期期末联考试题含解析_第3页
浙江省金华义乌市2025届九年级数学第一学期期末联考试题含解析_第4页
浙江省金华义乌市2025届九年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省金华义乌市2025届九年级数学第一学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一元二次方程的根的情况是A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判断2.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个3.从1、2、3、4四个数中随机选取两个不同的数,分别记为、,则关于的一元二次方程有实数解的概率为()A. B. C. D.4.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且.图象上有一点在轴下方,则下列判断正确的是()A. B. C. D.5.如图,将左边正方形剪成四块,恰能拼成右边的矩形,若a=2,则b的值是()A. B. C.+1 D.+16.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是()A.③②①④ B.②④①③ C.③①④② D.②③④①7.已知平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.8.二次函数y=ax2+bx+c(a≠1)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,1)、(x2,1),其中1<x2<1,有下列结论:①b2﹣4ac>1;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=1.其中,正确的结论有()A.①③④ B.①②④ C.③④⑤ D.①③⑤9.下列事件中,是随机事件的是()A.三角形任意两边之和大于第三边B.任意选择某一电视频道,它正在播放新闻联播C.a是实数,|a|≥0D.在一个装着白球和黑球的袋中摸球,摸出红球10.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.11.某同学用一根长为(12+4π)cm的铁丝,首尾相接围成如图的扇形(不考虑接缝),已知扇形半径OA=6cm,则扇形的面积是()A.12πcm2 B.18πcm2 C.24πcm2 D.36πcm212.已知抛物线的对称轴为直线,与x轴的一个交点坐标,其部分图象如图所示,下列结论:抛物线过原点;;;抛物线的顶点坐标为;当时,y随x增大而增大其中结论正确的是A. B. C. D.二、填空题(每题4分,共24分)13.方程的根为_____.14.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随即抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为_____.15.如图所示,某河堤的横断面是梯形,,迎水坡长26米,且斜坡的坡度为,则河堤的高为米.16.对一批防PM2.5口罩进行抽检,经统计合格口罩的概率是0.9,若这批口罩共有2000只,则其中合格的大约有__只.17.抛物线y=5(x﹣4)2+3的顶点坐标是_____.18.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为_______米.三、解答题(共78分)19.(8分)如图,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)直接写出点A、B、C的坐标;(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(与点C、B不重合)过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使,请求出点D的坐标;(4)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.20.(8分)已知:如图,在中,D是AC上一点,联结BD,且∠ABD=∠ACB.(1)求证:△ABD∽△ACB;(2)若AD=5,AB=7,求AC的长.21.(8分)已知:如图,是正方形的对角线上的两点,且.求证:四边形是菱形.22.(10分)如图所示,四边形ABCD中,AD∥BC,∠A=90°,∠BCD<90°,AB=7,AD=2,BC=3,试在边AB上确定点P的位置,使得以P、C、D为顶点的三角形是直角三角形.23.(10分)如图,已知点A,B的坐标分别为(4,0),(3,2).(1)画出△AOB关于原点O对称的图形△COD;(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D的坐标是,点F的坐标是,此图中线段BF和DF的关系是.24.(10分)如图所示,是的直径,其半径为,扇形的面积为.(1)求的度数;(2)求的长度.25.(12分)有甲、乙、丙三个不透明的布袋,甲袋中装有2个相同的小球,它们分别标有字母A和B;乙袋中装有3个相同的小球,它们分别标有字母C、D和E;丙袋中装有2个相同的小球,它们分别标有字母H和I.从三个布袋中各随机取出一个小球.求:(1)取出的3个小球恰好有2个元音字母的概率;(2)取出的3个小球全是辅音字母的概率.26.如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1>y2时自变量x的取值范围.

参考答案一、选择题(每题4分,共48分)1、A【分析】把a=1,b=-1,c=-1,代入,然后计算,最后根据计算结果判断方程根的情况.【详解】方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入计算是解题的突破口.2、C【详解】试题解析:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.3、C【分析】先根据一元二次方程有实数根求出ac≤4,继而画树状图进行求解即可.【详解】由题意,△=42-4ac≥0,∴ac≤4,画树状图如下:a、c的积共有12种等可能的结果,其中积不大于4的有6种结果数,所以a、c的积不大于4(也就是一元二次方程有实数根)的概率为,故选C.【点睛】本题考查了一元二次方程根的判别式,列表法或树状图法求概率,得到ac≤4是解题的关键.4、D【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.5、C【分析】从图中可以看出,正方形的边长=a+b,所以面积=(a+b)2,矩形的长和宽分别是2b+a,b,面积=b(a+2b),两图形面积相等,列出方程得=(a+b)2=b(a+2b),其中a=2,求b的值,即可.【详解】解:根据图形和题意可得:(a+b)2=b(a+2b),其中a=2,则方程是(2+b)2=b(2+2b)解得:,故选:C.【点睛】此题主要考查了图形的剪拼,本题的关键是从两图形中,找到两图形的边长的值,然后利用面积相等列出等式求方程,解得b的值.6、B【分析】根据相似三角形的判定定理,即可得到答案.【详解】∵DE∥BC,∴∠B=∠ADE,∵DF∥AC,∴∠A=∠BDF,∴∆ADE~∆DBF.故选:B.【点睛】本题主要考查三角形相似的判定定理,掌握“有两个角对应相等的两个三角形相似”是解题的关键.7、C【解析】∵在平面直角坐标系中,关于原点对称的两个点的横坐标与横坐标、纵坐标与纵坐标都互为相反数,∴点P(1,-2)关于原点的对称点坐标为(-1,2),故选C.8、A【分析】根据函数图象和二次函数的性质,可以判断各个小题中的结论是否成立,本题得以解决.【详解】∵二次函数y=ax2+bx+c(a≠1)的图象与x轴有两个交点,∴b2﹣4ac>1,故①正确;∵该函数图象的对称轴是x=﹣1,当x=1时的函数值小于﹣1,∴x=﹣2时的函数值和x=1时的函数值相等,都小于﹣1,∴4a﹣2b+c<﹣1,故②错误;∵该函数图象的对称轴是x=﹣1,与x轴的交点为(x1,1)、(x2,1),其中1<x2<1,∴﹣3<x,1<﹣2,故③正确;∵当x=﹣1时,该函数取得最小值,∴当m为任意实数时,a﹣b≤am2+bm,故④正确;∵1,∴b=2a.∵x=1时,y=a+b+c>1,∴3a+c>1,故⑤错误.故选:A.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数图象与系数的关系、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.9、B【分析】随机事件就是可能发生也可能不发生的事件,根据定义即可判断.【详解】A、三角形任意两边之和大于第三边是必然事件,故选项不合题意;B、任意选择某一电视频道,它正在播放新闻联播,是随机事件,故选项符合题意;C、a是实数,|a|≥0,是必然事件,故选项不合题意;D、在一个装着白球和黑球的袋中摸球,摸出红球,是不可能事件,故选项不合题意.故选:B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、D【分析】根据中心对称图形和轴对称图形的定义即可得解.【详解】A、不是中心对称图形,也不是轴对称图形,此项错误B、是中心对称图形,也是轴对称图形,此项错误C、不是中心对称图形,是轴对称图形,此项错误D、是中心对称图形,但不是轴对称图形,此项正确故选:D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11、A【分析】首先根据铁丝长和扇形的半径求得扇形的弧长,然后根据弧长公式求得扇形的圆心角,然后代入扇形面积公式求解即可.【详解】解:∵铁丝长为(12+4π)cm,半径OA=6cm,∴弧长为4πcm,∴扇形的圆心角为:=120°,∴扇形的面积为:=12πcm2,故选:A.【点睛】本题考查了扇形的面积的计算,解题的关键是了解扇形的面积公式及弧长公式,难度不大.12、C【解析】∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标(4,0),∴抛物线与x轴的另一个交点为(0,0),故①正确,当x=﹣1时,y=a﹣b+c>0,故②错误,∵,得4a+b=0,b=﹣4a,∵抛物线过点(0,0),则c=0,∴4a+b+c=0,故③正确,∴y=ax2+bx=a(x+)2﹣=a(x+)2﹣=a(x﹣2)2﹣4a=a(x﹣2)2+b,∴此函数的顶点坐标为(2,b),故④正确,当x<1时,y随x的增大而减小,故⑤错误,故选C.点睛:本题考查二次函数的图象和性质.熟练应用二次函数的图象和性质进推理判断是解题的关键.二、填空题(每题4分,共24分)13、x=3【分析】方程两边同时乘以,变为整式方程,然后解方程,最后检验,即可得到答案.【详解】解:,∴方程两边同时乘以,得:,解得:,经检验:是原分式方程的根,∴方程的根为:.故答案为:.【点睛】本题考查了解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意要检验.14、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及点(a,b)在第二象限的情况,再利用概率公式即可求得答案.【详解】解:画树状图图得:∵共有6种等可能的结果,点(a,b)在第二象限的有2种情况,∴点(a,b)在第二象限的概率为:.故答案为:.【点睛】本题考查的是利用公式计算某个事件发生的概率,注意找全所有可能出现的结果数作分母.在判断某个事件A可能出现的结果数时,要注意审查关于事件A的说法,避免多数或少数.15、24【解析】试题分析:因为斜坡的坡度为,所以BE:AE=,设BE=12x,则AE=5x;在Rt△ABE中,由勾股定理知:即:解得:x=2或-2(负值舍去);所以BE=12x=24(米).考点:解直角三角形的应用.16、1.【分析】用这批口罩的只数×合格口罩的概率,列式计算即可得到合格的只数.【详解】2000×0.9=2000×0.9=1(只).故答案为:1.【点睛】本题主要考查了用样本估计总体,生产中遇到的估算产量问题,通常采用样本估计总体的方法.17、(4,3)【解析】根据顶点式的坐标特点直接写出顶点坐标.【详解】解:∵y=5(x-4)2+3是抛物线解析式的顶点式,

∴顶点坐标为(4,3).

故答案为(4,3).【点睛】此题考查二次函数的性质,掌握顶点式y=a(x-h)2+k中,顶点坐标是(h,k)是解决问题的关键.18、2【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【详解】解:∵DE∥AB,DF∥AC,

∴△DEF∽△ABC,

∴,

即,

∴AC=6×1.5=2米.

故答案为:2.【点睛】本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.三、解答题(共78分)19、(1)点A、B、C的坐标分别为:(−1,0)、(5,0)、(0,−5);(2)P(2,3);(3)D(,);(4)M的坐标为:(2,7)或(2,−3)或(2,6)或(2,−1).【分析】(1)令y=0,则x=−1或5,令x=0,则y=−5,即可求解;(2)点B是点A关于函数对称轴的对称点,连接BC交抛物线对称轴于点P,则点P为所求,即可求解;(3)S△BDE:S△BEF=2:3,则,即:,即可求解;(4)分MB为斜边、MC为斜边、BC为斜边三种情况,分别求解即可.【详解】(1)令y=0,则x=−1或5,令x=0,则y=−5,故点A、B、C的坐标分别为:(−1,0)、(5,0)、(0,−5);(2)抛物线的对称轴为:x=2,点B是点A关于函数对称轴的对称点,连接BC交抛物线对称轴于点P,则点P为所求,直线BC的表达式为:y=−x+5,当x=2时,y=3,故点P(2,3);(3)设点D(x,−x2+4x+5),则点E(x,−x+5),∵S△BDE:S△BEF=2:3,则,即:,解得:m=或5(舍去5),故点D(,);(4)设点M(2,m),而点B、C的坐标分别为:(5,0)、(0,−5),则MB2=9+m2,MC2=4+(m−5)2,BC2=50,①当MB为斜边时,则9+m2=4+(m−5)2+50,解得:m=7;②当MC为斜边时,则4+(m−5)2=9+m2+50,可得:m=−3;③当BC为斜边时,则4+(m−5)2+9+m2=50可得:m=6或−1;综上点M的坐标为:(2,7)或(2,−3)或(2,6)或(2,−1).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、点的对称性、图形的面积计算等,其中(4),要注意分类求解,避免遗漏.20、(1)见详解;(2)【详解】(1)证明:∵∠A=∠A,∠ABD=∠ACB,∴△ABD∽△ACB.(2)解:∵△ABD∽△ACB,∴,∴,∴21、见解析【解析】连接AC,交BD于O,由正方形的性质可得OA=OC,OB=OD,AC⊥BD根据BE=DF可得OE=OF,由对角线互相垂直平分的四边形是菱形即可判定,【详解】∵四边形ABCD是正方形,∴OD=OB,OA=OC,BD⊥AC,∵BE=DF,∴DE=BF,∴OE=OF,∵OA=OC,AC⊥EF,OE=OF,∴四边形AECF为菱形.【点睛】本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.22、在线段AB上且距离点A为1、6、处.【分析】分∠DPC=90°,∠PDC=90,∠PDC=90°三种情况讨论,在边AB上确定点P的位置,根据相似三角形的性质求得AP的长,使得以P、A、D为顶点的三角形是直角三角形.【详解】(1)如图,当∠DPC=90°时,∴∠DPA+∠BPC=90°,∵∠A=90°,∴∠DPA+∠PDA=90°,∴∠BPC=∠PDA,∵AD∥BC,∴∠B=180°-∠A=90°,∴∠A=∠B,∴△APD∽△BCP,∴,∵AB=7,BP=AB-AP,AD=2,BC=3,∴,∴AP2﹣7AP+6=0,∴AP=1或AP=6,(2)如图:当∠PDC=90°时,过D点作DE⊥BC于点E,∵AD//BC,∠A=∠B=∠BED=90°,∴四边形ABED是矩形,∴DE=AB=7,AD=BE=2,∵BC=3,∴EC=BC-BE=1,在Rt△DEC中,DC2=EC2+DE2=50,设AP=x,则PB=7﹣x,在Rt△PAD中PD2=AD2+AP2=4+x2,在Rt△PBC中PC2=BC2+PB2=32+(7﹣x)2,在Rt△PDC中PC2=PD2+DC2,即32+(7﹣x)2=50+4+x2,解方程得:.(3)当∠PDC=90°时,∵∠BCD<90°,∴点P在AB的延长线上,不合题意;∴点P的位置有三处,能使以P、A、D为顶点的三角形是直角三角形,分别在线段AB上且距离点A为1、6、处.【点睛】本题考查了相似三角形的判定与性质及勾股定理,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;解题时要认真审题,选择适宜的判定方法,熟练掌握相似三角形的判定定理并运用分类讨论的思想是解题关键.23、(1)见解析;(2)见解析;(3)D(﹣3,﹣2),F(﹣2,3),垂直且相等【分析】(1)分别延长BO,AO到占D,C,使DO=BO,CO=AO,再顺次连接成△COD即可;

(2)将A,B绕点O按逆时针方向旋转90°得到对应点E,F,再顺次连接即可得出△EOF;

(3)利用图象即可得出点的坐标,以及线段BF和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论